• Resuscitation · Aug 2015

    Total liquid ventilation offers ultra-fast and whole-body cooling in large animals in physiological conditions and during cardiac arrest.

    • Alice Hutin, Fanny Lidouren, Matthias Kohlhauer, Luc Lotteau, Aurélien Seemann, Nicolas Mongardon, Bertrand Renaud, Daniel Isabey, Pierre Carli, Benoit Vivien, Jean-Damien Ricard, Thierry Hauet, Richard E Kerber, Alain Berdeaux, Bijan Ghaleh, and Renaud Tissier.
    • Inserm, U955, Equipe 03, F-94000 Créteil, France; Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France; Hôpitaux Universitaires Paris Centre, Cochin Hôtel-Dieu, Université Paris Descartes - Paris V , F-75014 Paris France.
    • Resuscitation. 2015 Aug 1;93:69-73.

    IntroductionTotal liquid ventilation (TLV) can cool down the entire body within 10-15 min in small animals. Our goal was to determine whether it could also induce ultra-fast and whole-body cooling in large animals using a specifically dedicated liquid ventilator. Cooling efficiency was evaluated under physiological conditions (beating-heart) and during cardiac arrest with automated chest compressions (CC, intra-arrest).MethodsIn a first set of experiments, beating-heart pigs were randomly submitted to conventional mechanical ventilation or hypothermic TLV with perfluoro-N-octane (between 15 and 32 °C). In a second set of experiments, pigs were submitted to ventricular fibrillation and CC. One group underwent continuous CC with asynchronous conventional ventilation (Control group). The other group was switched to TLV while pursuing CC for the investigation of cooling capacities and potential effects on cardiac massage efficiency.ResultsUnder physiological conditions, TLV significantly decreased the entire body temperatures below 34 °C within only 10 min. As examples, cooling rates averaged 0.54 and 0.94 °C/min in rectum and esophageous, respectively. During cardiac arrest, TLV did not alter CC efficiency and cooled the entire body below 34 °C within 20 min, the low-flow period slowing cooling during CC.ConclusionUsing a specifically designed liquid ventilator, TLV induced a very rapid cooling of the entire body in large animals. This was confirmed in both physiological conditions and during cardiac arrest with CC. TLV could be relevant for ultra-rapid cooling independently of body weight.Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.