• Pediatric research · Aug 1997

    Ischemia-reperfusion injury in the intestines of newborn pigs.

    • A Papparella, F G DeLuca, C E Oyer, H Pinar, and B S Stonestreet.
    • Women and Infants' Hospital at Rhode Island, and Pediatric Surgery, Providence 02905, USA.
    • Pediatr. Res. 1997 Aug 1; 42 (2): 180-8.

    AbstractAlthough the pathogenesis of necrotizing enterocolitis remains uncertain, ischemia appears to be an important contributing factor to the development of this disorder. Reperfusion plays a major role in ischemia-related injury, and oxygen free radicals produced during reperfusion most likely contribute to the injury. These oxidants can be generated during prostanoid metabolism, which increases during reperfusion of ischemic gut in adult subjects. The present study was designed to: 1) examine the effects of superior mesenteric artery occlusion, e.g. ischemia and reperfusion in vivo on the development of histopathologic intestinal injury; 2) determine whether products of arachidonic acid metabolism, e.g. prostanoids are increased during reperfusion of ischemic gut; and 3) determine whether oxygen free radical scavengers attenuate the injury in newborn pigs. Chronically catheterized placebo-pretreated newborn pigs exposed to ischemia-reperfusion, placebo-pretreated nonischemic control pigs, and polyethylene glycol-superoxide dismutase (SOD) plus polyethylene glycol-catalase (CAT)-pretreated, ischemic pigs were studied by examining changes in intestinal circulation, oxygenation, prostanoids, and tissue injury. In the placebo-pretreated pigs, intestinal blood flow decreased to very low levels during superior mesenteric artery occlusion. During reperfusion, blood flow increased, but remained below baseline. After ischemia, oxygen uptake returned to values that were similar to baseline. Intestinal efflux of the vasodilator 6-keto-prostaglandin F1alpha was evident (p < 0.05 versus no or zero efflux) during early reperfusion. Histopathologic scoring of terminal ileal samples showed significant mucosal necrosis, surface epithelial disruption, lamina propria congestion and hemorrhage, submucosal hemorrhage, edema, and increases in cells compared with the placebo-pretreated nonischemic pigs. In the SOD plus CAT-pretreated ischemic pigs, changes in intestinal blood flow, oxygen uptake, 6-keto-prostaglandin F1alpha efflux, and the pattern of the ileal tissue injury did not differ significantly from the placebo-pretreated ischemic pigs. In summary, superior mesenteric artery occlusion for 1 h and reperfusion for 2 h resulted in severe intestinal ischemia, early postocclusive limited increases in intestinal perfusion and oxygen uptake, efflux of vasodilating prostanoids during early reperfusion, and signs of ischemic tissue injury in the placebo- and SOD plus CAT-pretreated pigs. This study demonstrates that, after superior mesenteric artery occlusion and reperfusion, severe intestinal tissue injury is detected in vivo, prostanoid efflux increases, and SOD plus CAT given just before occlusion does not attenuate the extent of injury in newborn pigs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.