• Eur J Orthop Surg Tr · Jul 2015

    Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.

    • Cédric Barrey, Marc-Antoine Rousseau, Sylvain Persohn, Sophie Campana, Gilles Perrin, and Wafa Skalli.
    • University Claude Bernard Lyon 1, Lyon, France, c.barrey@wanadoo.fr.
    • Eur J Orthop Surg Tr. 2015 Jul 1; 25 Suppl 1: S155-65.

    UnlabelledSimulating compressive action of muscles, a follower load attends to reproduce a more physiological biomechanical behaviour of the cervical spine. Only few experimental studies reported its influence on kinematics and intradiscal pressure in the cervical spine.Study DesignIn vitro human cadaveric and numerical simulating evaluation of a compressive preload in the cervical spine.ObjectivesTo analyse the influence of a compressive follower preload on the biomechanical behaviour of the cervical spine.MethodsThe present study was divided into two parts: part 1: in vitro investigation; part 2: numerical simulating analysis. Part 1: Twelve human cadaveric spines from C2 to T2 were evaluated intact and after application of a 50-N follower load. All tests were performed under load control by applying pure moments loading of 2 Nm in flexion/extension (FE), axial rotation (AR) and lateral bending (LB). Three-dimensional displacements were measured using an optoelectronic system, and intradiscal pressures were measured at two levels. Part 2: Using a 3D finite element model, we evaluated the influence of a 50- and 100-N compressive preload on intradiscal loads, facets forces and ranges of motion. Different positions of the follower load along the anteroposterior axis (±5 mm) were also simulated.ResultsPart 1: Mean variation of cervical lordosis was 5° ± 3°. The ROM slightly increased in FE, whereas it consistently decreased in AR and LB. Coupled lateral bending during AR was also reduced. Increase in hysteresis was observed on load-displacement curves only for AR and LB. Intradiscal pressures increased, but the aspect of load-pressure curves was altered in AR and LB. Part 2: Using the FE model, only minimal changes in ROM were noted following the simulation of a 50-N compressive load for the three loading conditions. Compared to intact condition, <10% variation was observed with regard to the different magnitude and positioning simulated. Intradiscal loads and facets forces were systematically increased by applying compressive preload.ConclusionsAlthough the follower load represents an attractive option to apply compressive preload during experimental tests, we found that this method could affect the native biomechanical behaviour of spine specimen depending on which movement was considered. Only minimal effects were observed in FE, whereas significant changes in kinematics and intradiscal pressures were observed for AR and LB.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.