-
Review
Current status of computational fluid dynamics for cerebral aneurysms: the clinician's perspective.
- George K C Wong and W S Poon.
- Division of Neurosurgery, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong. georgewong@surgery.cuhk.edu.hk
- J Clin Neurosci. 2011 Oct 1; 18 (10): 1285-8.
AbstractThe ultimate management goal for unruptured intracranial aneurysms is to select the aneurysms at risk of rupture and treat them. Computational fluid dynamics (CFD) utilizes mechanical engineering principles to explicate what occurs in tubes (vessels) and bulges (aneurysms). CFD parameters have been related to the biological processes that occur in the aneurysm wall, and models have been developed to predict the risk of aneurysm rupture. A PubMed search from 1 January 1970 to 30 November 2010 was carried out using the keywords "computational fluid dynamics" AND "cerebral aneurysm". References were also reviewed for relevant articles. All relevant articles were then reviewed by a vascular neurosurgeon, who found that the hemodynamic parameters of wall shear stress (WSS), WSS gradient, inflow jet, impingement zone, and aneurysm inflow-angle (IA) lack the predictive values required for clinical practice. CFD study can now be simulated and reproduced in a simple and fast analysis of steady, non-pulsatile flow with phase contrast magnetic resonance-derived volumetric inflow rate but the key question of whether a patient-specific CFD model can predict the rupture risk of unruptured intracranial aneurysms remains to be determined in future studies incorporating multivariate analysis. CFD models will become available for routine clinical practice as the computational power of computers further improves.Copyright © 2011 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.