• Experimental physiology · Mar 2007

    Differential sensitivity of excitatory and inhibitory synaptic transmission to modulation by nitric oxide in rat nucleus tractus solitarii.

    • Sheng Wang, Julian F R Paton, and Sergey Kasparov.
    • Department of Physiology, School of Medical Sciences, Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD, UK.
    • Exp. Physiol. 2007 Mar 1; 92 (2): 371-82.

    AbstractThe nucleus tractus solitarii (NTS) is a key central link in control of multiple homeostatic reflexes. A number of studies have demonstrated that exogenous and endogenous nitric oxide (NO) within NTS regulates visceral function, but further understanding of the role of NO in the NTS is hampered by the lack of information about its intracellular actions. We studied effects of NO in acute rat brainstem slices. Aqueous NO solution (NO(aq)) potentiated electrically evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) in different neuronal subpopulations and, in some neurones, caused a depolarization. Similar effects were observed using the NO donor diethylamine NONOate (DEA/NO). The threshold NO concentration as determined using an NO electrochemical sensor was estimated as approximately 0.4 nm (EC(50) approximately 0.9 nm) for potentiating glutamatergic EPSPs but approximately 3 nm for monosynaptic GABAergic IPSPs. Bath application of the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) abolished NO(aq)- and DEA/NO-induced potentiation of evoked EPSPs, IPSPs and depolarization. All NO actions were mimicked by the non-NO-dependent guanylate cyclase activator Bay 41-2272. The effects of NO on EPSPs and IPSPs persisted in cells where postsynaptic sGC was blocked by ODQ and therefore were presynaptic, owing to a direct modulation of transmitter release combined with depolarization of presynaptic neurones. Therefore, while lower concentrations of NO may be important for fine tuning of glutamatergic transmission, higher concentrations are required to directly engage GABAergic inhibition. This differential sensitivity of excitatory and inhibitory connections to NO may be important for determining the specificity of the effects of this freely diffusible gaseous messenger.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…