• Life sciences · Jun 2003

    Review

    Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance.

    • Michael H Ossipov, Josephine Lai, Todd W Vanderah, and Frank Porreca.
    • Department of Pharmacology, University of Arizona, Tucson 85724, USA.
    • Life Sci. 2003 Jun 27; 73 (6): 783-800.

    AbstractOpioid analgesics are frequently used for the long-term management of chronic pain states, including cancer pain. The prolonged use of opioids is associated with a requirement for increasing doses to manage pain at a consistent level, reflecting the phenomenon of analgesic tolerance. It is now becoming clearer that patients receiving long-term opioid therapy can develop unexpected abnormal pain. Such paradoxical opioid-induced pain, as well as tolerance to the antinociceptive actions of opioids, has been reliably measured in animals during the period of continuous opioid delivery. Several recent studies have demonstrated that such pain may be secondary to neuroplastic changes that result, in part, from an activation of descending pain facilitation mechanisms arising from the rostral ventromedial medulla (RVM). One mechanism which may mediate such pain facilitation is through the increased activity of CCK in the RVM. Secondary consequences from descending facilitation may be produced. For example, opioid-induced upregulation of spinal dynorphin levels seem to depend on intact descending pathways from the RVM reflecting spinal neuroplasticity secondary to changes at supraspinal levels. Increased expression of spinal dynorphin reflects a trophic action of sustained opioid exposure which promotes an increased pain state. Spinal dynorphin may promote pain, in part, by enhancing the evoked release of excitatory transmitters from primary afferents. In this regard, opioids also produce trophic actions by increasing CGRP expression in the dorsal root ganglia. Increased pain elicited by opioids is a critical factor in the behavioral manifestation of opioid tolerance as manipulations which block abnormal pain also block antinociceptive tolerance. Manipulations that have blocked enhanced pain and antinociceptive tolerance include reversible and permanent ablation of descending facilitation from the RVM. Thus, opioids elicit systems-level adaptations resulting in pain due to descending facilitation, upregulation of spinal dynorphin and enhanced release of excitatory transmitters from primary afferents. Adaptive changes produced by sustained opioid exposure including trophic effects to enhance pain transmitters suggest the need for careful evaluation of the consequences of long-term opioid administration to patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.