• J Spinal Disord Tech · Apr 2008

    Comparative Study

    Biomechanical comparison of anterior lumbar interbody fusion and transforaminal lumbar interbody fusion.

    • Avraam Ploumis, Chunhui Wu, Gustav Fischer, Amir A Mehbod, Wentien Wu, Antonio Faundez, and Ensor E Transfeldt.
    • Biomechanic Laboratory of the Foundation for the Advancement of Spinal Knowledge (FASK), Minneapolis, MN, USA. ploumis@med.auth.gr
    • J Spinal Disord Tech. 2008 Apr 1; 21 (2): 120-5.

    Study DesignAn in vitro biomechanical comparison of 2 fusion techniques, anterior lumbar interbody fusion (ALIF) and transforaminal lumbar interbody fusion (TLIF), on cadaveric human spines.ObjectiveTo compare the immediate construct stability, in terms of range of motion (ROM) and neutral zone, of ALIF, including 2 separate approaches, and TLIF procedures with posterior titanium rod fixation.Summary Of Background DataBoth ALIF and TLIF have been used to treat chronic low back pain and instability. In many cases, the choice between these 2 techniques is based only on personal preference. No biomechanical performance comparison between these 2 fusion techniques is available to assist surgical decision.MethodsTwelve cadaveric lumbar motion segments were loaded sinusoidally at 0.05 Hz and 5 Nm in unconstrained axial rotation, lateral bending and flexion extension. Specimens were randomly divided into 2 groups with 6 in each group. One group was assigned for TLIF whereas the other group for ALIF. In the ALIF group, there were 3 steps. First, the lateral ALIF procedure with the anterior longitudinal ligament (ALL) intact was performed. Afterwards, the ALL was cut without removing the ALIF cage. Finally, another appropriately sized ALIF cage was inserted anteriorly. Biomechanical tests were conducted after each step.ResultsIn the ALIF group, the lateral ALIF and subsequent anterior ALIF reduced segmental motion significantly (P=0.03) under all loading conditions. Removing the ALL increased ROM by 59% and 142% in axial rotation and flexion extension, respectively (P=0.03). The anterior ALIF approach was able to achieve similar biomechanical stability of the lateral approach in lateral bending and flexion extension (P>0.05) under all loading conditions. The TLIF procedure significantly reduced the range of motion compared with the intact state (P=0.03). However, no statistical difference was detected between the TLIF group and the ALIF group (P>0.05).ConclusionsBoth ALIF and TLIF procedures combined with posterior instrumentation significantly improved construct stability of intact spinal motion segments. However, there was no statistical difference between these 2 fusion techniques. The 2 ALIF approaches (lateral and anterior) also had similar construct stability even though anterior longitudinal ligament severing significantly reduced stability.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.