• J Neurosurg Spine · Jun 2012

    Biomechanical analysis in a human cadaveric model of spinous process fixation with an interlaminar allograft spacer for lumbar spinal stenosis: Laboratory investigation.

    • Ben B Pradhan, Alexander W L Turner, Michael A Zatushevsky, G Bryan Cornwall, Sean S Rajaee, and Hyun W Bae.
    • Risser Orthopaedic Group, Pasadena, CA, USA.
    • J Neurosurg Spine. 2012 Jun 1; 16 (6): 585-93.

    ObjectTraditional posterior pedicle screw fixation is well established as the standard for spinal stabilization following posterior or posterolateral lumbar fusion. In patients with lumbar spinal stenosis requiring segmental posterior instrumented fusion and decompression, interlaminar lumbar instrumented fusion (ILIF) is a potentially less invasive alternative with reduced morbidity and includes direct decompression assisted by an interlaminar allograft spacer stabilized by a spinous process plate. To date, there has been no biomechanical study on this technique. In the present study the biomechanical properties of the ILIF construct were evaluated using an in vitro cadaveric biomechanical analysis, and the results are presented in comparison with other posterior fixation techniques.MethodsEight L1-5 cadaveric specimens were subjected to nondestructive multidirectional testing. After testing the intact spine, the following conditions were evaluated at L3-4: bilateral pedicle screws, bilateral laminotomy, ILIF, partial laminectomy, partial laminectomy plus unilateral pedicle screws, and partial laminectomy plus bilateral screws. Intervertebral motions were measured at the index and adjacent levels.ResultsBilateral pedicle screws without any destabilization provided the most rigid construct. In flexion and extension, ILIF resulted in significantly less motion than the intact spine (p < 0.05) and no significant difference from the laminectomy with bilateral pedicle screws (p = 0.76). In lateral bending, there was no statistical difference between ILIF and laminectomy with unilateral pedicle screws (p = 0.11); however, the bilateral screw constructs were more rigid (p < 0.05). Under axial rotation, ILIF was not statistically different from laminectomy with unilateral or bilateral pedicle screws or from the intact spine (p > 0.05). Intervertebral motions adjacent to ILIF were typically lower than those adjacent to laminectomy with bilateral pedicle screws.ConclusionsStability of the ILIF construct was not statistically different from bilateral pedicle screw fixation following laminectomy in the flexion and extension and axial rotation directions, while adjacent segment motions were decreased. The ILIF construct may allow surgeons to perform a minimally invasive, single-approach posterior decompression and instrumented fusion without the added morbidity of traditional pedicle screw fixation and posterolateral fusion.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…