• Blood purification · Jan 2004

    Review

    Hemoadsorption to improve organ recovery from brain-dead organ donors: a novel therapy for a novel indication?

    • Ramesh Venkataraman, Mingchen Song, Rachel Lynas, and John A Kellum.
    • CRISMA Laboratory (Clinical Research, Investigation, and Systems Modeling of Acute Illness), Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
    • Blood Purif. 2004 Jan 1; 22 (1): 143-9.

    AbstractWhile brain-dead organ donors represent the majority of the organ donor pool, it appears that graft survival is adversely affected by brain death itself. Brain death has been shown to cause severe disturbances in the hormonal, hemodynamic and immunological homeostasis, which could in part be responsible for the inferior outcome of organs originating from brain-dead donors compared to living donors. Hemodynamic effects of brain death lead to a wide fluctuation in mean perfusion pressures, blood flow to the organs and systemic oxygen consumption, altering regional perfusion. In addition, a wide array of immunological changes has been shown to occur after brain death contributing to organ injury and hemodynamic instability. Recent studies have shown that brain death upregulates multiple lymphocyte- and macrophage-derived cytokines and the injured brain itself may be the source of proinflammatory factors such as S100B. This increased inflammatory response seen during and immediately after brain death has also been associated with poor allograft function. Furthermore, there is evidence to suggest that the massive inflammatory response seen in brain-dead donors could also lead to increased immunogenicity and accelerated allograft rejection after transplantation. Hence, we hypothesize that nonspecific downregulation of this inflammatory response by hemoadsorption could potentially lead to improved donor organ and allograft function. As a 'proof of concept' we tested the ability of a novel hemoadsorbent to remove S100B in vitro using two human glioblastoma cell lines. Our results indicate a >80% reduction in S100B after 2 h of circulation with the sorbent.Copyright 2004 S. Karger AG, Basel

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.