• J. Cereb. Blood Flow Metab. · Dec 2007

    Reduced tissue damage and improved recovery of motor function after traumatic brain injury in mice deficient in complement component C4.

    • Zerong You, Jinsheng Yang, Kazue Takahashi, Phoebe H Yager, Hyung-Hwan Kim, Tao Qin, Gregory L Stahl, R Alan B Ezekowitz, Michael C Carroll, and Michael J Whalen.
    • Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
    • J. Cereb. Blood Flow Metab. 2007 Dec 1; 27 (12): 1954-64.

    AbstractComplement component C4 mediates C3-dependent tissue damage after systemic ischemia-reperfusion injury. Activation of C3 also contributes to the pathogenesis of experimental and human traumatic brain injury (TBI); however, few data exist regarding the specific pathways (classic, alternative, and lectin) involved. Using complement knockout mice and a controlled cortical impact (CCI) model, we tested the hypothesis that the classic pathway mediates secondary damage after TBI. After CCI, C4c and C3d immunostaining were detected in cortical vascular endothelial cells in wild-type (WT) mice; however, C4c and C3d immunostaining were also detected in C1q(-/-) mice, and C3d immunostaining was detected in C4(-/-) mice. After CCI, WT and C1q(-/-) mice had similar motor deficits, Morris water maze performance, and brain lesion size. Naive C4(-/-) and WT mice did not differ in baseline motor performance, but C4(-/-) mice had reduced postinjury motor deficits (days 1 to 7, P<0.05) and decreased brain tissue damage (days 14 and 35, P<0.05) versus WT. Reconstitution of C4(-/-) mice with human C4 (hC4) reversed their protection against postinjury motor deficits (P<0.05 versus vehicle), but administration of hC4 did not impair postinjury motor performance (versus vehicle) in WT mice. The protective effects of C4(-/-) were functionally distinct from the classic pathway and terminal complement, as C1q(-/-) and C3(-/-) mice had postinjury tissue damage and motor dysfunction similar to WT. Thus, C4 contributes to motor deficits and brain tissue damage after CCI by mechanism(s) fundamentally different from those involved in experimental systemic ischemia-reperfusion injury.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.