-
- Wolfram Burkhardt, Florian Kurth, Manuela Pitterle, Nicola Blassnig, Andreas Wemhöner, and Mario Rüdiger.
- Department of Neonatology and Paediatric Intensive Care, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.
- Neonatology. 2013 Jan 1; 103 (3): 218-23.
BackgroundVentilatory pressures should target the range between the upper and lower inflection point of the pressure volume curve in order to avoid atelecto- and volutrauma. During high-frequency oscillatory ventilation (HFOV), this range is difficult to determine. Quadrant impedance measurement (QIM) has recently been shown to allow accurate and precise measurement of lung volume changes during conventional mechanical ventilation.ObjectivesTo investigate if QIM can be used to determine a static pressure-residual impedance curve during a recruitment-derecruitment manoeuvre on HFOV and to monitor the time course of alveolar recruitment after changing mean airway pressure (MAP).MethodsAn incremental and decremental MAP trial (6 cm H2O to 27 cm H2O) was conducted in five surfactant-depleted newborn piglets during HFOV. Ventilatory, gas exchange and haemodynamic parameters were recorded. Continuous measurement of thoracic impedance change was performed.ResultsMean residual impedance (RI) increased with each stepwise increase of MAP resulting in a total mean increase of +26.5% (±4.0) at the highest MAP (27 cm H2O) compared to baseline ventilation at 6 cm H2O. Upon decreasing MAP levels, RI fell more slowly compared to its ascent; 83.4% (±19.1) and 84.8% (±16.4) of impedance changes occurred in the first 5 min after an increase or decrease in airway pressure, respectively.ConclusionsQIM could be used for continuous monitoring of thoracic impedance and determination of the pressure-RI curve during HFOV. The method could prove to be a promising bedside method for the monitoring of lung recruitment during HFOV in the future.Copyright © 2013 S. Karger AG, Basel.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.