• Stroke · Jun 2003

    Alterations in autoregulatory and myogenic function in the cerebrovasculature of Dahl salt-sensitive rats.

    • John S Smeda and Geoffrey W Payne.
    • Division of Basic Medical Sciences, Memorial University, Health Science Center, St John's, Newfoundland, Canada A1B 3V6. jsmeda@mun.ca
    • Stroke. 2003 Jun 1; 34 (6): 1484-90.

    Background And PurposeDahl salt-sensitive rats fed an 8.7% NaCl diet exhibited hypertensive encephalopathy and developed seizures associated with areas of blood-brain barrier (BBB) disruption without brain ischemia. The incidence of hemorrhagic stroke was low (7/47). We tested the hypothesis that a defect in cerebral blood flow (CBF) autoregulation under hypertensive conditions preceded hypertensive encephalopathy.MethodsBrain ischemia and BBB disruption were assessed with the use of tetrazolium red staining and Evans blue dye extravasation, respectively. Myogenic constriction to pressure was measured in isolated middle cerebral arteries (MCAs) with a pressure myograph. CBF autoregulation was assessed with the use of laser-Doppler techniques.ResultsAsymptomatic rats fed 8.7% NaCl had MCAs that developed an age-related attenuation in their ability to constrict to pressure, which was amplified in rats exhibiting hypertensive encephalopathy. The MCAs of rats with hemorrhagic stroke lost this function and developed large degrees of basal tone. The majority (4/6) of asymptomatic rats fed high salt for longer than 3 weeks exhibited a linear relationship between CBF and blood pressure. The characteristics of CBF regulation were consistent with the possible absence of autoregulation coupled with cerebrovascular vasoconstriction.ConclusionsBoth MCA pressure-dependent constriction and CBF autoregulation in the MCA perfusion domain were lost before the development of hypertensive encephalopathy or hemorrhagic stroke. These defects could contribute to the development of BBB disruption during hypertension. Cerebrovascular vasoconstriction in the absence of CBF autoregulation may protect the brain from excessive overperfusion during hypertension and could account for the low incidence of cerebral hemorrhage in this model.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.