• Int J Colorectal Dis · Apr 2014

    Creation of an effective colorectal anastomotic leak early detection tool using an artificial neural network.

    • Katie Adams and Savvas Papagrigoriadis.
    • Department of Colorectal Surgery, King's College Hospital, Denmark Hill, London, SE5 9RS, UK, katieadams1@nhs.net.
    • Int J Colorectal Dis. 2014 Apr 1; 29 (4): 437-43.

    PurposeAnastomotic leaks greatly increase both morbidity and mortality amongst colorectal patients. Earlier detection of leaks leads to improved patient outcomes; however, diagnosis often proves difficult due to heterogeneous presentation and varied differential diagnosis. The purpose of the study was to create an artificial neural network (ANN) capable of accurately identifying patients at risk of developing a post-operative colorectal anastomotic leak.MethodsA genetic ANN was trained and validated on a retrospective patient cohort. Two comparative groups were identified: those with anastomotic leaks confirmed at re-operation with a control group of patients with a post-operative delayed recovery, but in whom leak was excluded and no re-operation required.ResultsSeventy-six patients were identified: 20 confirmed leaks and 56 controls. No significant difference in the baseline features between leak and control groups in terms of age (leaks 65.9 years [SD 9.29] controls 58.3 years [SD 17.0)], P = 0.054). Utilising backwards variable selection, ANN maintained 19 input variables. Internal validation of the ANN produced a sensitivity of 85.0 %, specificity of 82.1 %, and AUC of 0.89 for correct identification of clinical anastomotic leaks. Of the 20 confirmed leaks, the model correctly identified 17 and misclassified 10 control patients in the clinical leak category. External validation on 12 consecutive pilot prospective patients produced a specificity of 83.3 %.ConclusionsANNs can be created to accurately detect clinical anastomotic leaks in the early post-operative period using routinely available clinical data. Further prospective ANN testing is required to confirm generalisability. ANNs may provide useful real-world tools for improving patient safety and outcomes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.