-
- Brian K Walsh, Craig D Smallwood, Jordan S Rettig, John E Thompson, Robert M Kacmarek, and John H Arnold.
- Department of Anesthesiology, Perioperative, and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital and Pediatric Anesthesia, Harvard Medical School, Boston, Massachusetts. briankwalsh@me.com.
- Respir Care. 2016 Sep 1; 61 (9): 1168-78.
BackgroundThousands of children require mechanical ventilation each year. Although mechanical ventilation is lifesaving, it is also associated with adverse events if not properly managed. The systematic implementation of evidence-based practice through the use of guidelines and protocols has been shown to mitigate risk, yet variation in care remains prevalent. Advances in health-care technology provided the ability to stream data about mechanical ventilation and therapeutic response. Through these advances, a computer system was developed to enable the coupling of physiologic and ventilation data for real-time interpretation. Our aim was to assess the feasibility and utility of a newly developed patient categorization and scoring system to objectively measure compliance with standards of care.MethodsWe retrospectively categorized the ventilation and oxygenation statuses of subjects within our pediatric ICU utilizing 15 rules-based algorithms. Targets were predetermined based on generally accepted practices. All patient categories were calculated and presented as a percent score (0-100%) of acceptable ventilation, acceptable oxygenation, barotrauma-free, and volutrauma-free states.ResultsTwo hundred twenty-two subjects were identified and analyzed encompassing 1,578 d of mechanical ventilation. Median age was 3 y, median ideal body weight was 14.7 kg, and 63% were male. The median acceptable ventilation score was 84.6%, and the median acceptable oxygenation score was 70.1% (100% being maximally acceptable). Potential for ventilator-induced lung injury was broken into 2 components: barotrauma and volutrauma. There was very little potential for barotrauma, with a median barotrauma-free state of 100%. Median potential for a volutrauma-free state was 56.1%.ConclusionsWe demonstrate the first patient categorization system utilizing a coordinated data-banking system and analytics to determine patient status and a surveillance of mechanical ventilation quality. Further research is needed to determine whether interventions such as visual display of variance from goal and patient categorization summaries can improve outcomes. (ClinicalTrials.gov registration NCT02184208.).Copyright © 2016 by Daedalus Enterprises.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.