• Ultrasound Med Biol · Jul 2009

    Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis.

    • Cecile Baron, Jean-François Aubry, Mickael Tanter, Stephen Meairs, and Mathias Fink.
    • Laboratoire Ondes et Acoustique, University Paris 7, INSERM, 10, rue Vauquelin, Paris 75005, France. norabelic@yahoo.fr
    • Ultrasound Med Biol. 2009 Jul 1; 35 (7): 1148-58.

    AbstractTwo clinical trials have used ultrasound to improve tPA thrombolysis in patients with acute ischemic stroke. The Combined Lysis of Thrombus in Brain Ischemia Using Transcranial Ultrasound and Systemic tPA (CLOTBUST) trial reported accelerated recanalisation of the middle cerebral artery (MCA) in patients with symptoms of MCA infarction, which were monitored with 2-MHz transcranial Doppler. In CLOTBUST, there was no increased bleeding as evidenced by cranial computed tomography. The Transcranial Low-Frequency Ultrasound-Mediated Thrombolysis in Brain Ischemia (TRUMBI) trial, which employed magnetic resonance imaging (MRI) before and after tPA thrombolysis, was discontinued prematurely because of an increased number of secondary hemorrhages, possibly related to the use of low frequency 300-kHz ultrasound. The purpose of our work is to help identify possible mechanisms of intracerebral hemorrhage resulting from sonothrombolysis by applying a simulation tool that estimates the pressure levels in the human brain that are produced with different sonothrombolysis devices. A simulation software based on a finite difference time domain (FDTD) three-dimensional (3D) scheme was developed to predict acoustic pressures in the brain. This tool numerically models the wave propagation through the skull and reproduces both ultrasound protocols of CLOTBUST and TRUMBI for analysis of the distribution of acoustic pressure in the brain during stroke treatment. For the simulated TRUMBI trial, we analyzed both a "high" and "low" hypothesis according to published parameters (for high and low amplitude excitations). For these hypotheses, the mean peak rarefactional pressures in the brain were 0.26 +/- 0.2 MPa (high hypothesis) and 0.06 +/- 0.05 MPa (low hypothesis), with maximal local values as high as 1.2 MPa (high hypothesis) and 0.27 MPa (low hypothesis) for configurations modelled in this study. The peak rarefactional pressure was thus higher than the inertial acoustic cavitation threshold in the presence of a standing wave in large areas of the brain, even outside the targeted clot. For the simulated CLOTBUST trial, the maximum peak negative pressure was less than 0.07 MPa. This simulated pressure is below the threshold for both inertial and stable acoustic cavitation but likewise lower than any acoustic pressure that has been reported as sufficient for effective sonothrombolysis. Simulating the pressure field of ultrasound protocols for clinical trials of sonothrombolysis may help explain mechanisms of adverse effects. Such simulations could prove useful in the initial design and optimization of future protocols for this promising therapy of ischemic stroke.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.