• Pain · Sep 2012

    Reactive oxygen species (ROS) modulate AMPA receptor phosphorylation and cell-surface localization in concert with pain-related behavior.

    • Kyungsoon Chung, Daniel Z Lee, and Myoung-Goo Kang.
    • Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
    • Pain. 2012 Sep 1;153(9):1905-15.

    AbstractSensitization of dorsal horn neurons (DHNs) in the spinal cord is dependent on pain-related synaptic plasticity and causes persistent pain. The DHN sensitization is mediated by a signal transduction pathway initiated by the activation of N-methyl-d-aspartate receptors (NMDA-Rs). Recent studies have shown that elevated levels of reactive oxygen species (ROS) and phosphorylation-dependent trafficking of GluA2 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) are a part of the signaling pathway for DHN sensitization. However, the relationship between ROS and AMPA-R phosphorylation and trafficking is not known. Thus, this study investigated the effects of ROS scavengers on the phosphorylation and cell-surface localization of GluA1 and GluA2. Intrathecal NMDA- and intradermal capsaicin-induced hyperalgesic mice were used for this study since both pain models share the NMDA-R activation-dependent DHN sensitization in the spinal cord. Our behavioral, biochemical, and immunohistochemical analyses demonstrated that: 1) NMDA-R activation in vivo increased the phosphorylation of AMPA-Rs at GluA1 (S818, S831, and S845) and GluA2 (S880) subunits; 2) NMDA-R activation in vivo increased cell-surface localization of GluA1 but decreased that of GluA2; and 3) reduction of ROS levels by ROS scavengers PBN (N-tert-butyl-α-phenylnitrone) or TEMPOL (4-hydroxy-2, 2, 6, 6-tetramethylpiperidin-1-oxyl) reversed these changes in AMPA-Rs, as well as pain-related behavior. Given that AMPA-R trafficking to the cell surface and synapse is regulated by NMDA-R activation-dependent phosphorylation of GluA1 and GluA2, our study suggests that the ROS-dependent changes in the phosphorylation and cell-surface localization of AMPA-Rs are necessary for DHN sensitization and thus, pain-related behavior. We further suggest that ROS reduction will ameliorate these molecular changes and pain.Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.