• Pharmacol. Res. · Mar 2014

    PKC-mediated HuD-GAP43 pathway activation in a mouse model of antiretroviral painful neuropathy.

    • M D Sanna, A Quattrone, C Ghelardini, and N Galeotti.
    • Laboratory of Neuropsychopharmacology, Department of, Psychology, Drug, Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy.
    • Pharmacol. Res. 2014 Mar 1; 81: 44-53.

    AbstractPatients treated with nucleoside reverse transcriptase inhibitors (NRTIs) develop painful neuropathies that lead to discontinuation of antiretroviral therapy thus limiting viral suppression strategies. The mechanisms by which NRTIs contribute to the development of neuropathy are not known. In order to elucidate the mechanisms underlying this drug-induced neuropathy, we have characterized cellular events in the central nervous system following antiretroviral treatment. Systemic administration of the antiretroviral agent, 2',3'-dideoxycytidine (ddC) considerably increased the expression and phosphorylation of protein kinase C (PKC) γ and ɛ, enzymes highly involved in pain processes, within periaqueductal grey matter (PAG), and, to a lesser extent, within thalamus and prefrontal cortex. These events appeared in coincidence with thermal and mechanical allodynia, but PKC blockade did not prevent the antiretroviral-induced pain hypersensitivity, ruling out a major involvement of PKC in the ddC-induced nociceptive behaviour. An increased expression of GAP43, a marker of neuroregeneration, and decreased levels of ATF3, a marker of neuroregeneration, were detected in all brain areas. ddC treatment also increased the expression of HuD, a RNA-binding protein target of PKC known to stabilize GAP43 mRNA. Pharmacological blockade of PKC prevented HuD and GAP43 overexpression. Silencing of both PKCγ and HuD reduced GAP43 levels in control mice and prevented the ddC-induced GAP43 enhanced expression. Present findings illustrate the presence of a supraspinal PKC-mediated HuD-GAP43 pathway activated by ddC. Based on our results, we speculate that antiretroviral drugs may recruit the HuD-GAP43 pathway, potentially contributing to a response to the antiretroviral neuronal toxicity.Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.