• Synapse · Dec 2003

    Comparative Study

    Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation.

    • Ke-Zhong Shen, Zi-Tao Zhu, Adam Munhall, and Steven W Johnson.
    • Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, USA.
    • Synapse. 2003 Dec 15; 50 (4): 314-9.

    AbstractThe technique of deep brain stimulation (DBS) has become a preferred surgical choice for the treatment of advanced Parkinson's disease. The subthalamic nucleus (STN) is presently the most promising target for such DBS. In this study, whole-cell patch-clamp recordings were made from 46 STN neurons in rat brain slices to examine the effect of high-frequency stimulation (HFS) of the STN on glutamatergic synaptic transmission in STN neurons. HFS, consisting of trains of stimuli at a frequency of 100 Hz for 1 min, produced three types of synaptic plasticity in 17 STN neurons. First, HFS of the STN induced short-term potentiation (STP) of evoked postsynaptic current (EPSC) amplitude in four neurons. STP was associated with a reduction in the EPSC paired-pulse ratio, suggesting a presynaptic site of action. Second, HFS of the STN generated long-term potentiation (LTP) of EPSC amplitude in eight neurons. Although the EPSC paired-pulse ratio was reduced transiently in the first 2 min following HFS, ratios measured 6-20 min after HFS were unchanged from control. This suggests that LTP is maintained by a postsynaptic mechanism. Third, HFS produced long-term depression (LTD) of EPSC amplitude in five STN neurons. LTD was associated with a significant increase in EPSC paired-pulse ratios, indicating a presynaptic site of action. These results suggest that HFS can produce long-term changes in the efficacy of synaptic transmission in the STN. HFS-induced synaptic plasticity might be one mechanism underlying the effectiveness of DBS in the STN as a treatment of advanced Parkinson's disease.Copyright 2003 Wiley-Liss, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.