• Anesthesiology · Aug 2015

    Sphingosine 1-phosphate Receptor 2 Signaling Suppresses Macrophage Phagocytosis and Impairs Host Defense against Sepsis.

    • JinChao Hou, QiXing Chen, Kai Zhang, BaoLi Cheng, GuoHao Xie, XiaoLiang Wu, Cheng Luo, LiMin Chen, Hong Liu, Bing Zhao, KeZhi Dai, and XiangMing Fang.
    • From the Department of Anesthesiology and Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (J.H., Q.C., K.Z., B.C., G.X., X.W., B.Z., K.D., X.F.); and Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (C.L., L.C., H.L.).
    • Anesthesiology. 2015 Aug 1;123(2):409-22.

    BackgroundSepsis is characterized by an inappropriate systemic inflammatory response and bacteremia that promote multiorgan failure and mortality. Sphingosine 1-phosphate receptor 2 (S1PR2) modulates endotoxin-induced inflammation in endothelium. However, as a highly expressed S1P receptor in macrophages, its role in regulating macrophage response to bacterial infection remains unclear.MethodsCecal ligation and puncture or intratracheal instillation of Escherichia coli was induced in wild-type or S1pr2-deficient mice. The antibacterial ability of cell-specific S1PR2 was tested in bone marrow reconstitution mice or mice with macrophage-specific deletion. Signaling molecules responsible for S1PR2-mediated phagocytosis were also measured in the bone marrow-derived macrophages. In addition, S1PR2 expression levels and its correlation with severity of sepsis were determined in critically ill patients (n = 25).ResultsBoth genetic deletion and pharmaceutical inhibition of S1PR2 significantly limited bacterial burden, reduced lung damage, and improved survival (genetic deletion, 0% in S1pr2 vs. 78.6% in S1pr2, P < 0.001; pharmaceutical inhibition, 9.1% in vehicle vs. 22.2% in S1PR2 antagonist, P < 0.05). This protection was attributed to the enhanced phagocytic function of S1PR2-deficient macrophages (mean fluorescent intensity, 2035.2 ± 202.1 vs. 407.8 ± 71.6, P < 0.001). Absence of S1PR2 in macrophage inhibits RhoA-dependent cell contraction and promotes IQGAP1-Rac1-dependent lamellipodial protrusion, whose signaling pathways depend on extracellular stimulators. In septic patients, increased S1PR2 levels in peripheral blood mononuclear cells were positively correlated with the severity of sepsis (r = 0.845, P < 0.001).ConclusionsThis study implies that S1PR2, as a critical receptor in macrophage, impairs phagocytosis and antimicrobial defense in the pathogenesis of sepsis. Interventions targeting S1PR2 signaling may serve as promising therapeutic approaches for sepsis.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.