• Pain · Sep 2012

    Increasing TNF levels solely in the rat hippocampus produces persistent pain-like symptoms.

    • Regina T Martuscello, Robert N Spengler, Adela C Bonoiu, Bruce A Davidson, Jadwiga Helinski, Hong Ding, Supriya Mahajan, Rajiv Kumar, Earl J Bergey, Paul R Knight, Paras N Prasad, and Tracey A Ignatowski.
    • Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA NanoAxis, LLC, Amherst, New York, USA Institute for Lasers, Photonics and Biophotonics, Buffalo, NY, USA Department of Anesthesiology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA Veterans Administration Western New York Healthcare System, Buffalo, NY, USA Department of Medicine, Division of Allergy, Immunology and Rheumatology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA Department of Chemistry, School of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA Program for Neuroscience, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
    • Pain. 2012 Sep 1; 153 (9): 187118821871-1882.

    AbstractThe manifestation of chronic, neuropathic pain includes elevated levels of the cytokine tumor necrosis factor-alpha (TNF). Previously, we have shown that the hippocampus, an area of the brain most notable for its role in learning and memory formation, plays a fundamental role in pain sensation. Using an animal model of peripheral neuropathic pain, we have demonstrated that intracerebroventricular infusion of a TNF antibody adjacent to the hippocampus completely alleviated pain. Furthermore, intracerebroventricular infusion of rTNF adjacent to the hippocampus induced pain behavior in naïve animals similar to that expressed during a model of neuropathic pain. These data support our premise that enhanced production of hippocampal-TNF is integral in pain sensation. In the present study, TNF gene expression was induced exclusively in the hippocampus, eliciting increased local bioactive TNF levels, and animals were assessed for pain behaviors. Male Sprague-Dawley rats received stereotaxic injection of gold nanorod (GNR)-complexed cDNA (control or TNF) plasmids (nanoplasmidexes), and pain responses (i.e., thermal hyperalgesia and mechanical allodynia) were measured. Animals receiving hippocampal microinjection of TNF nanoplasmidexes developed thermal hyperalgesia bilaterally. Sensitivity to mechanical stimulation also developed bilaterally in the rat hind paws. In support of these behavioral findings, immunoreactive staining for TNF, bioactive levels of TNF, and levels of TNF mRNA per polymerase chain reaction analysis were assessed in several brain regions and found to be increased only in the hippocampus. These findings indicate that the specific elevation of TNF in the hippocampus is not a consequence of pain, but in fact induces these behaviors/symptoms.Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.