-
- K H Alzoubi, M Srivareerat, A M Aleisa, and K A Alkadhi.
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
- J. Mol. Neurosci. 2013 Jan 1; 49 (1): 11-20.
AbstractCaffeine has been reported to enhance cognition in animal and humans. Additionally, caffeine alleviates cognitive impairment associated with a number of disorders including Alzheimer's disease. The lipophilic nature of caffeine allows for rapid absorption into the bloodstream where it freely crosses the blood-brain barrier. Caffeine promotes dendritic spine growth in cultured hippocampal neurons, which suggests a neuroprotective effect. We examined the effect of chronic caffeine treatment on stress-induced suppression of long-term potentiation (LTP) and impairment of molecules of its signaling cascade. Rats were subjected to daily stress using the psychosocial stress paradigm (intruder model), in vivo recordings from area CA1 of the hippocampus of adult rat, and immunoblot analysis of essential signaling molecules. Caffeine prevented stress-induced LTP impairment. Western blot analysis showed reduction of the basal levels of the phosphorylated calcium calmodulin kinase II (P-CAMKII), total CaMKII, and brain-derived neurotrophic factor (BDNF) in area CA1 of stressed rats. These reductions were prevented by chronic caffeine treatment (0.33 mg/L in drinking water). In addition, caffeine prevented the upregulation of calcineurin levels in stressed rats. High-frequency stimulation (HFS) normally increased P-CaMKII, total CaMKII, and calcineurin levels in control as well as in caffeine-treated stressed rats. However, in stressed rats, the same HFS induced increases in the levels of total CaMKII and calcineurin, but not those of P-CaMKII. The levels of signaling molecules may not reflect activities of these molecules. It appears that the neuroprotective effect of caffeine involves preservation of the levels of essential kinases and phosphatases in stressed rats. This may include preservation of basal levels of BDNF by chronic caffeine treatment in stressed animals. These findings highlight the critical role of P-CaMKII and BDNF in caffeine-induced prevention of stress-induced LTP impairment.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.