-
Intensive Care Med Exp · Dec 2015
Prone position ameliorates lung elastance and increases functional residual capacity independently from lung recruitment.
- Alessandro Santini, Alessandro Protti, Thomas Langer, Beatrice Comini, Massimo Monti, Cristina Carin Sparacino, Daniele Dondossola, and Luciano Gattinoni.
- Dipartimento di Fisiopatologica Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Francesco Sforza 35, 20122, Milan, Italy, alessandro.santini@unimi.it.
- Intensive Care Med Exp. 2015 Dec 1; 3 (1): 55.
BackgroundProne position is used to recruit collapsed dependent lung regions during severe acute respiratory distress syndrome, improving lung elastance and lung gas content. We hypothesised that, in the absence of recruitment, prone position would not result in any improvement in lung mechanical properties or gas content compared to supine position.MethodsTen healthy pigs under general anaesthesia and paralysis underwent a pressure-volume curve of the respiratory system, chest wall and lung in supine and prone positions; the respective elastances were measured. A lung computed tomography (CT) scan was performed in the two positions to compute gas content (i.e. functional residual capacity (FRC)) and the distribution of aeration. Recruitment was defined as a percentage change in non-aerated lung tissue compared to the total lung weight.ResultsNon-aerated (recruitable) lung tissue was a small percentage of the total lung tissue weight in both positions (4 ± 3 vs 1 ± 1 %, supine vs prone, p = 0.004). Lung elastance decreased (20.5 ± 1.8 vs 15.5 ± 1.6 cmH2O/l, supine vs prone, p < 0.001) and functional residual capacity increased (380 ± 82 vs 459 ± 60 ml, supine vs prone, p = 0.025) in prone position; specific lung elastance did not change (7.0 ± 0.5 vs 6.5 ± 0.5 cmH2O, supine vs prone, p = 0.24). Lung recruitment was low (3 ± 2 %) and was not correlated to increases in functional residual capacity (R (2) 0.2, p = 0.19). A higher amount of well-aerated and a lower amount of poorly aerated lung tissue were found in prone position.ConclusionsIn healthy pigs, prone position ameliorates lung mechanical properties and increases functional residual capacity independently from lung recruitment, through a redistribution of lung aeration.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.