• J. Thorac. Cardiovasc. Surg. · Aug 2010

    Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury.

    • Leo M Gazoni, Dustin M Walters, Eric B Unger, Joel Linden, Irving L Kron, and Victor E Laubach.
    • Department of Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA.
    • J. Thorac. Cardiovasc. Surg. 2010 Aug 1; 140 (2): 440-6.

    ObjectiveAdenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion injury. We hypothesized that activation of A(1), A(2A), or A(3) adenosine receptors would provide protection against lung ischemia-reperfusion injury.MethodsWith the use of an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours of cold ischemia followed by 2 hours of reperfusion. Lungs were administered vehicle, adenosine, or selective A(1), A(2A), or A(3) receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion.ResultsCompared with the vehicle-treated control group, treatment with A(1), A(2A), or A(3) agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced tumor necrosis factor-alpha production. Adenosine treatment was also protective, but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A(2A) agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A(1) or A(3) agonists.ConclusionSelective activation of A(1), A(2A), or A(3) adenosine receptors provides significant protection against lung ischemia-reperfusion injury. The decreased elaboration of the potent proinflammatory cytokine tumor necrosis factor-alpha and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients.Copyright 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.