-
Comment Comparative Study
Artificial neural networks as prediction tools in the critically ill.
- Gilles Clermont.
- The CRISMA Laboratory, Department of Critical Care Medicine, The Center for Inflammatory and Regenerative Modeling, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. clermontg@upmc.edu
- Crit Care. 2005 Apr 1; 9 (2): 153-4.
AbstractThe past 25 years have witnessed the development of improved tools with which to predict short-term and long-term outcomes after critical illness. The general paradigm for constructing the best known tools has been the logistic regression model. Recently, a variety of alternative tools, such as artificial neural networks, have been proposed, with claims of improved performance over more traditional models in particular settings. However, these newer methods have yet to demonstrate their practicality and usefulness within the context of predicting outcomes in the critically ill.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.