-
- Andrew B Schwartz, X Tracy Cui, Douglas J Weber, and Daniel W Moran.
- Department of Neurobiology, Center for the Neural Basis of Cognition, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15213, USA. abs21@pitt.edu
- Neuron. 2006 Oct 5; 52 (1): 205-20.
AbstractBrain-controlled interfaces are devices that capture brain transmissions involved in a subject's intention to act, with the potential to restore communication and movement to those who are immobilized. Current devices record electrical activity from the scalp, on the surface of the brain, and within the cerebral cortex. These signals are being translated to command signals driving prosthetic limbs and computer displays. Somatosensory feedback is being added to this control as generated behaviors become more complex. New technology to engineer the tissue-electrode interface, electrode design, and extraction algorithms to transform the recorded signal to movement will help translate exciting laboratory demonstrations to patient practice in the near future.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.