• Conf Proc IEEE Eng Med Biol Soc · Jan 2007

    Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography.

    • Hyonyoung Han, Min-Joon Kim, and Jung Kim.
    • Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea. hhn98@kaist.edu
    • Conf Proc IEEE Eng Med Biol Soc. 2007 Jan 1; 2007: 1538-41.

    AbstractThis paper presents a motion artifact reduction algorithm for a real-time, wireless and wearable photoplethysmography (PPG) device for measuring heart beats. A wearable finger band PPG device consists of a 3-axis accelerometer, infrared LED, photo diode, a microprocessor and wireless module. Sources of the motion artifacts were investigated from the hand motions, through computing the correlations between the three directional finger motions and distorted PPG signals. A two-dimensional active noise cancellation algorithm was applied to compensate the distorted signals by motions, using the directional accelerometer data. NLMS (Normalized Least Mean Square) adaptive filter (4th order) was employed in the algorithm. As a result, the signals' distortion rates were reduced from 52.34% to 3.53%, at frequencies between 1 and 2.5 Hz, which representing daily motions such walking and jogging. The wearable health monitoring device equipped with the motion artifact reduction algorithm can be integrated as a terminal in a so-called ubiquitous healthcare system, which provides a continuous health monitoring without interrupting a daily life.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…