• Thorax · Jan 2012

    Comparative Study

    Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD.

    • Amy Lewis, Joanna Riddoch-Contreras, Samantha A Natanek, Anna Donaldson, William D-C Man, John Moxham, Nicholas S Hopkinson, Michael I Polkey, and Paul R Kemp.
    • Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, SAF Building South Kensington Campus, London SW7 2AZ, UK.
    • Thorax. 2012 Jan 1; 67 (1): 26-34.

    RationaleMuscle atrophy confers a poor prognosis in patients with chronic obstructive pulmonary disease (COPD), yet the molecular pathways responsible are poorly characterised. Muscle-specific microRNAs and serum response factor (SRF) are important regulators of muscle phenotype that contribute to a feedback system to regulate muscle gene expression. The role of these factors in the skeletal muscle dysfunction that accompanies COPD is unknown.Methods31 patients with COPD and 14 healthy age-matched controls underwent lung and quadriceps function assessments, measurement of daily activity and a percutaneous quadriceps muscle biopsy. The expression of muscle-specific microRNAs, myosin heavy chains and components of the serum response factor signalling pathway were determined by qPCR.ResultsA reduction in expression of miR-1 (2.5-fold, p=0.01) and the myocardin-related transcription factors (MRTFs) A and B was observed in patients compared with controls (MRTF-A mRNA: twofold, p=0.028; MRTF-B mRNA: fourfold, p=0.011). miR-1 expression was associated with smoking history, lung function, fat-free mass index, 6 min walk distance and percentage of type 1 fibres. miR-133 and miR-206 were negatively correlated with daily physical activity. Insulin-like growth factor 1 mRNA was increased in the patients and miR-1 was negatively correlated with phosphorylation of the kinase Akt. Furthermore, the protein levels of histone deacetylase 4, another miR-1 target, were increased in the patients.ConclusionsDownregulation of the activity of the MRTF-SRF axis and the expression of muscle-specific microRNAs, particularly miR-1, may contribute to COPD-associated skeletal muscle dysfunction.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.