• Br. J. Nutr. · Apr 2013

    The preventive effect of β-carotene on denervation-induced soleus muscle atrophy in mice.

    • Masahiro Ogawa, Yoshihiro Kariya, Tomoya Kitakaze, Ryoichi Yamaji, Naoki Harada, Tatsuji Sakamoto, Keisuke Hosotani, Yoshihisa Nakano, and Hiroshi Inui.
    • Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
    • Br. J. Nutr. 2013 Apr 28; 109 (8): 1349-58.

    AbstractMuscle atrophy increases the production of reactive oxygen species and the expression of atrophy-related genes, which are involved in the ubiquitin-proteasome system. In the present study, we investigated the effects of β-carotene on oxidative stress (100 μM-H2O2)-induced muscle atrophy in murine C2C12 myotubes. β-Carotene (10 μM) restored the H2O2-induced decreased levels of myosin heavy chain and tropomyosin (P< 0·05, n 3) and decreased the H2O2-induced increased levels of ubiquitin conjugates. β-Carotene reduced the H2O2-induced increased expression levels of E3 ubiquitin ligases (Atrogin-1 and MuRF1) and deubiquitinating enzymes (USP14 and USP19) (P< 0·05, n 3) and attenuated the H2O2-induced nuclear localisation of FOXO3a. Furthermore, we determined the effects of β-carotene on denervation-induced muscle atrophy. Male ddY mice (8 weeks old, n 30) were divided into two groups and orally pre-administered micelle with or without β-carotene (0·5 mg once daily) for 2 weeks, followed by denervation in the right hindlimb. β-Carotene was further administered once daily until the end of the experiment. At day 3 after denervation, the ratio of soleus muscle mass in the denervated leg to that in the sham leg was significantly higher in β-carotene-administered mice than in control vehicle-administered ones (P< 0·05, n 5). In the denervated soleus muscle, β-carotene administration significantly decreased the expression levels of Atrogin-1, MuRF1, USP14 and USP19 (P< 0·05, n 5) and the levels of ubiquitin conjugates. These results indicate that β-carotene attenuates soleus muscle loss, perhaps by repressing the expressions of Atrogin-1, MuRF1, USP14 and USP19, at the early stage of soleus muscle atrophy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.