-
Comput. Biomed. Res. · Oct 1998
Multigrid solution of the potential field in modeling electrical nerve stimulation.
- R Hoekema, K Venner, J J Struijk, and J Holsheimer.
- Institute for Biomedical Technology, University of Twente, AE Enschede, 7500, The Netherlands.
- Comput. Biomed. Res. 1998 Oct 1; 31 (5): 348-62.
AbstractIn this paper, multilevel techniques are introduced as a fast numerical method to compute 3-D potential field in nerve stimulation configurations. It is shown that with these techniques the computing time is reduced significantly compared to conventional methods. Consequently, these techniques greatly enhance the possibilities for parameter studies and electrode design. Following a general description of the model of nerve stimulation configurations, the basic principles of multilevel solvers for the numerical solution of partial differential equations are briefly summarized. Subsequently, some essential elements for successful application are discussed. Finally, results are presented for the potential field in a nerve bundle induced by tripolar stimulation with a cuff electrode surrounding part of the nerve.Copyright 1998 Academic Press.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.