-
- Mohammad Reza Raoufy, Sohrab Hajizadeh, Shahriar Gharibzadeh, Ali R Mani, Parivash Eftekhari, and Mohammad Reza Masjedi.
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, London, UK.
- Respirology. 2013 Jan 1; 18 (1): 108-16.
Background And ObjectiveRespiratory inductive plethysmography is a non-invasive technique for measuring respiratory function. However, there are challenges associated with using linear methods for calibration of respiratory inductive plethysmography. In this study, we developed two nonlinear models, artificial neural network and adaptive neuro-fuzzy inference system, to estimate respiratory volume based on thoracoabdominal movements, and compared these models with routine linear approaches, including qualitative diagnostic calibration and multiple linear regression.MethodsRecordings of spirometry volume and respiratory inductive plethysmography were obtained for 10 normal subjects and 10 asthmatic patients, during asynchronous breathing for 7 min. The first 5 min of recording were used to develop the models; the remaining data were used for subsequent validation of the results.ResultsThe results from the nonlinear models fitted the spirometry volume curve significantly better than those obtained by linear methods, particularly during asynchrony (P < 0.05). On a breath-by-breath analysis, estimates of tidal volume, total cycle time and sigh values using the artificial neural network model were accurate by comparison with qualitative diagnostic calibration. In contrast to the artificial neural network model, there was a significant correlation between values for thoracoabdominal asynchrony and increased error of qualitative diagnostic calibration (P < 0.05).ConclusionsThese results indicate that the nonlinear methods can be adapted to closely simulate variable conditions and used to study the patterns of volume changes during normal and asynchronous breathing.© 2012 The Authors. Respirology © 2012 Asian Pacific Society of Respirology.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.