• J. Comp. Neurol. · May 1986

    Comparative Study

    The intercalated cells of the amygdala.

    • O E Millhouse.
    • J. Comp. Neurol. 1986 May 8; 247 (2): 246-71.

    AbstractThe intercalated cell groups, or massa intercalata, of the amygdala have been studied in rodent brains with Golgi methods. They also have been examined in gallocyanin-chromalum-, AChE-, and Timm-stained rat brains. The Golgi data indicate that the intercalated cells are not confined to a series of isolated cell clumps but form a neuronal net that covers the rostral half of the lateral-basolateral nuclear complex, stretches across a major portion of rostral amygdala, and continues rostrally beneath the anterior commissure. There are two general types of intercalated neuron--medium and large neurons. The medium intercalated neurons are more common. They have round to elongate somata, 9-18 microns in diameter, and round to bipolar dendritic trees, depending on their location. Most of the dendrites are spine-bearing, as are 20% of the somata. Their axons often have locally ramifying collaterals. The parent axons apparently terminate in either the lateral-basolateral or central nuclei and some of them appear to enter the external capsule. There is a unique medium intercalated neuron that has nearly spine-free, varicose dendrites and an axon that is typical of short axon (Golgi II) cells. There are two varieties of large intercalated neuron-spiny and aspiny. Most of them are aspiny, although they usually have a few spines scattered along their dendrites. Both varieties have elongate, sometimes round, somata that can be as much as 60 microns long. Their dendrites are long, thick, and have few branch points. Only the initial part of the large aspiny cell axon has been impregnated. The large spiny cell axons have several local collaterals; the destination of the parent axons is unknown. The intercalated cells occur along fiber bundles, which are probably afferent to them. The axons that travel among the intercalated cells give off short collaterals and boutons en passant. The sources of these fibers are not known. From the published experimental data, it is likely that they originate in the piriform and entorhinal cortices, the lateral preoptic area, lateral hypothalamus, and ventral pallidum. Axon collaterals of basolateral nucleus pyramidal cells appear to terminate among the intercalated cells. It is suggested that the intercalated cells serve as sites for integration of the output of these various areas and, in turn, communicate it to the lateral-basolateral and central amygdaloid nuclei. The intercalated cells closely resemble neurons in the corpus striatum. Thus the question is raised and discussed of whether the intercalated cells are a ventral extension of the corpus striatum.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.