-
- Rita M Malcata, Will G Hopkins, and Scott Richardson.
- J Sport Sci Med. 2012 Jan 1; 11 (3): 533-6.
AbstractProgression of a team's performance is a key issue in competitive sport, but there appears to have been no published research on team progression for periods longer than a season. In this study we report the game-score progression of three teams of a youth talent-development academy over five seasons using a novel analytic approach based on generalised mixed modelling. The teams consisted of players born in 1991, 1992 and 1993; they played totals of 115, 107 and 122 games in Asia and Europe between 2005 and 2010 against teams differing in age by up to 3 years. Game scores predicted by the mixed model were assumed to have an over-dispersed Poisson distribution. The fixed effects in the model estimated an annual linear pro-gression for Aspire and for the other teams (grouped as a single opponent) with adjustment for home-ground advantage and for a linear effect of age difference between competing teams. A random effect allowed for different mean scores for Aspire and opposition teams. All effects were estimated as factors via log-transformation and presented as percent differences in scores. Inferences were based on the span of 90% confidence intervals in relation to thresholds for small factor effects of x/÷1.10 (+10%/-9%). Most effects were clear only when data for the three teams were combined. Older teams showed a small 27% increase in goals scored per year of age difference (90% confidence interval 13 to 42%). Aspire experienced a small home-ground advantage of 16% (-5 to 41%), whereas opposition teams experienced 31% (7 to 60%) on their own ground. After adjustment for these effects, the Aspire teams scored on average 1.5 goals per match, with little change in the five years of their existence, whereas their opponents' scores fell from 1.4 in their first year to 1.0 in their last. The difference in progression was trivial over one year (7%, -4 to 20%), small over two years (15%, -8 to 44%), but unclear over >2 years. In conclusion, the generalized mixed model has marginal utility for estimating progression of soccer scores, owing to the uncertainty arising from low game scores. The estimates are likely to be more precise and useful in sports with higher game scores. Key pointsA generalized linear mixed model is the approach for tracking game scores, key performance indicators or other measures of performance based on counts in sports where changes within and/or between games/seasons have to be considered.Game scores in soccer could be useful to track performance progression of teams, but hundreds of games are needed.Fewer games will be needed for tracking performance represented by counts with high scores, such as game scores in rugby or key performance indicators based on frequent events or player actions in any team sport.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.