• Pain physician · Sep 2013

    Randomized Controlled Trial

    Intrathecal lentivirus-mediated transfer of interleukin-10 attenuates chronic constriction injury-induced neuropathic pain through modulation of spinal high-mobility group box 1 in rats.

    • Zhenghua He, Qulian Guo, Muzhang Xiao, Chunli He, and Wangyuan Zou.
    • Department of Anesthesiology Xiangya Hospital, Central South University, China.
    • Pain Physician. 2013 Sep 1;16(5):E615-25.

    BackgroundNeuropathic pain is a complex state of chronic pain that is usually accompanied by peripheral and central nervous system damage or dysfunction. Previous studies have indicated that neuroinflammation in the spinal cord is an important contributor to neuropathological and behavioral abnormalities. A series of early inflammatory markers, such as IL-1, TNF-α, and IFN-γ, and advanced inflammatory markers, such as high-mobility group box 1 (HMGB1), are involved in neuroinflammation.Study DesignA randomized, double blind, controlled animal trial.ObjectiveIn this study, a lentivirus delivering human IL-10 (LV/hIL-10) was administered intrathecally to determine the effects of IL-10 on allodynia and hyperalgesia in a chronic constriction injury-induced (CCI) rat model of neuropathic pain.MethodsSprague-Dawley rats weighting 260 - 320 g were randomly divided into 4 groups. Group Sham (Sham), Group CCI±Normal Saline (NS), Group CCI±LV/hIL-10 (LV/hIL-10), and Group CCI±LV/control (vector). Rats in each group were intrathecally delivered with NS, LV/control, or recombinant vector LV/hIL-10 in a total volume of 10 μl. Paw withdrawal mechanical thresholds (PWMT) and paw withdrawal thermal latency PWTL were measured one day before CCI (baseline) and 0, 3, 7, 14, and 28 days after intrathecal administration. Cerebrospinal fluid (CSF) samples were collected during surgical plane anesthesia and the collected CSF samples were used to assay for human IL-10, rat IL-1β, rat IL-6, and rat TNF-α by enzyme-linked immunosorbent assay (ELISA). Animals were sacrificed and the L4-5 lumbar segment of the spinal cord was removed for determination of green fluorescent protein (GFP) expression. Immunohistochemical analysis was performed using anti HMGB1 antibodies and the expression of HMGB1 protein in the spinal cord was determined by western blot analysis after intrathecal delivery (n = 8 each).ResultsThe results show that intrathecal LV/hIL-10 reverses enhanced pain states. Moreover, the increased level of HMGB1 exhibited in a late stage of CCI was inhibited by exogenous overexpression of hIL-10 in the CCI model. Expression of HMGB1, RAGE, and pAkt were lower in CCI-induced rats treated with LV/hIL-10 than in those treated with LV/control (vector) or saline (NS). Our results showed that IL-10 inhibits activation of the inflammatory HMGB1-RAGE pathway in the CCI rat model.LimitationsFurther experimental investigations are needed to clarify the specific biological roles played by HMGB1 in IL-10-mediated regulation of neuropathic pain.ConclusionOur results indicate that intrathecal lentiviral-mediated transfer of IL-10 attenuates CCI-induced neuropathic pain in rats. The anti-thermal hyperalgesia and anti-mechanical allodynia may be partly attributable to the decreased expression of HMGB1 and inhibition of HMGB1-RAGE pathway.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.