• Int J Comput Assist Radiol Surg · Nov 2013

    Optimized order estimation for autoregressive models to predict respiratory motion.

    • Robert Dürichen, Tobias Wissel, and Achim Schweikard.
    • Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, Lübeck, Germany, duerichen@rob.uni-luebeck.de.
    • Int J Comput Assist Radiol Surg. 2013 Nov 1; 8 (6): 1037-42.

    PurposeTo successfully ablate moving tumors in robotic radio-surgery, it is necessary to compensate for motion of inner organs caused by respiration. This can be achieved by tracking the body surface and correlating the external movement with the tumor position as it is implemented in the CyberKnife[Formula: see text] Synchrony system. Tracking errors, originating from system immanent time delays, are typically reduced by time series prediction. Many prediction algorithms exploit autoregressive (AR) properties of the signal. Estimating the optimal model order [Formula: see text] for these algorithms constitutes a challenge often solved via grid search or prior knowledge about the signal.MethodsAiming at a more efficient approach instead, this study evaluates the Akaike information criterion (AIC), the corrected AIC, and the Bayesian information criterion (BIC) on the first minute of the respiratory signal. Exemplarily, we evaluated the approach for a least mean square (LMS) and a wavelet-based LMS (wLMS) predictor.ResultsAnalyzing 12 motion traces, orders estimated by AIC had the highest prediction accuracy for both prediction algorithms. Extending the investigations to 304 real motion traces, the prediction error of wLMS using AIC was found to decrease significantly by 85.1 % of the data compared to the original implementationConclusionsThe overall results suggest that using AIC to estimate the model order [Formula: see text] for prediction algorithms based on AR properties is a valid method which avoids intensive grid search and leads to high prediction accuracy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.