-
- Murat A Zergeroglu, Michael J McKenzie, R Andrew Shanely, Darin Van Gammeren, Keith C DeRuisseau, and Scott K Powers.
- Department of Execise and Sport Sciences, Center for Exercise Science, University of Florida, Gainesville, FL 32601, USA.
- J. Appl. Physiol. 2003 Sep 1; 95 (3): 1116-24.
AbstractProlonged mechanical ventilation (MV) results in oxidative damage in the diaphragm; however, it is unclear whether this MV-induced oxidative injury occurs rapidly or develops slowly over time. Furthermore, it is unknown whether both soluble (cytosolic) and insoluble (myofibrillar) proteins are equally susceptible to oxidation during MV. These experiments tested two hypotheses: 1). MV-induced oxidative injury in the diaphragm occurs within the first 6 h after the initiation of MV; and 2). MV is associated with oxidative modification of both soluble and insoluble proteins. Adult Sprague-Dawley rats were randomly divided into one of seven experimental groups: 1) control (n = 8); 2) 3-h MV (n = 8); 3). 6-h MV (n = 6); 4). 18-h MV (n = 8); 5). 3-h anesthesia-spontaneous breathing (n = 8); 6). 6-h anesthesia-spontaneous breathing (n = 6); and 7). 18-h anesthesia-spontaneous breathing (n = 8). Markers of oxidative injury in the diaphragm included the measurement of reactive (protein) carbonyl derivatives (RCD) and total lipid hydroperoxides. Three hours of MV did not result in oxidative injury in the diaphragm. In contrast, both 6 and 18 h of MV promoted oxidative injury in the diaphragm, as indicated by increases in both protein RCD and lipid hydroperoxides. Electrophoretic separation of soluble and insoluble proteins indicated that the MV-induced accumulation of RCD was limited to insoluble proteins with molecular masses of approximately 200, 120, 80, and 40 kDa. We conclude that MV results in a rapid onset of oxidative injury in the diaphragm and that insoluble proteins are primary targets of MV-induced protein oxidation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.