• Synapse · Oct 1995

    Electrochemical evidence of increased dopamine transmission in prefrontal cortex and nucleus accumbens elicited by ventral tegmental mu-opioid receptor activation in freely behaving rats.

    • M B Noel and A Gratton.
    • McGill University, Douglas Hospital Research Center, Verdun, Quebec, Canada.
    • Synapse. 1995 Oct 1; 21 (2): 110-22.

    AbstractChronoamperometry was used in combination with monoamine-selective electrodes to monitor, in nucleus accumbens (NAcc) and prefrontal cortex (PFC) of freely behaving rats, changes in dopamine (DA)-like electrochemical signals elicited by unilateral ventral tegmental microinjections of the selective mu-opioid receptor agonist D-Ala, N-Me-Phe-Gly-Ol-Enkephalin (DAMGO; 0.01, 0.1, and 1.0 nmol). The results show that DAMGO dose-dependently increased electrochemical signals both in Nacc and PFC within a few minutes of injection. While DAMGO elicited signal increases of comparable amplitudes in both regions, the increases recorded in PFC were significantly longer lasting than those in NAcc; at the highest dose tested (1.0 nmol), DAMGO produced signal increases that lasted (mean +/- sem) 129 +/- 7.3 min in PFC and 96 +/- 12.5 min in NAcc. Pretreatment with the opioid receptor antagonist, naloxone (2 mg/kg, sc), significantly attenuated the peak amplitude and reduced the duration of DAMGO-induced (0.1 nmol) signal increases both in PFC and NAcc. In contrast, pretreatment with apomorphine (50 micrograms/kg, sc), a D1/D2 DA receptor agonist, significantly reduced the duration and the rate of rise of the signal increases in both regions but had little effect on the peak increases in signal. Unilateral ventral tegmental DAMGO administration (0.01, 0.1, and 1.0 nmol) also caused dose-dependent increases in contraversive circling the duration of which approximated that of the signal increases recorded in NAcc. However, differences in the time courses of DAMGO-induced contraversive circling and signal increases in NAcc suggest that the behavioral stimulant effect of ventral tegmental mu-opioid receptor activation may not be mediated exclusively by meso-NAcc DA neurons. The results of this study suggest that enkephalins modulate the activity of meso-PFC DA neurons and that behaviorally relevant activation of mu-opioid receptors in the ventral tegmental area increases DA transmission in PFC to a same, if not to a greater extent as in NAcc. These findings are discussed in relation to evidence indicating that the response of meso-NAcc DA neurons to a variety of stimuli, including drugs of abuse, is indirectly regulated by a DA-sensitive neurons in PFC.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.