• Brain Behav. Immun. · Mar 2005

    Review

    Immune-to-brain communication dynamically modulates pain: physiological and pathological consequences.

    • Julie Wieseler-Frank, Steven F Maier, and Linda R Watkins.
    • Department of Psychology & Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0345, USA. frankjw@psych.colorado.edu
    • Brain Behav. Immun. 2005 Mar 1; 19 (2): 104-11.

    AbstractThis review examines recently recognized roles of immunological processes in pain modulation and explores the potential implications of these immunologically derived phenomena for human chronic pain control. The focus is an examination of how activation of immune-like glial cells within the spinal cord can amplify pain by modulating the excitability of spinal neurons. Such glially driven enhancement of pain can be physiological, as occurs in response to peripheral infection or inflammation. Here, immune-to-brain-to-spinal cord communication leads to pain enhancement (hyperalgesia) as one component of the well-characterized sickness response. This sickness-induced hyperalgesia, like many sickness responses, is mediated by the activation of glia and the consequent release of proinflammatory cytokines. However, glially driven pain can also occur under pathological conditions, such as occurs following peripheral nerve inflammation or trauma. Here, immune- and trauma-induced alterations in peripheral nerve function lead to the release of substances within the spinal cord that trigger the activation of glia. Evidence is reviewed that such pathologically driven glial activation is associated with enhanced pain states of diverse etiologies and that such pain facilitation is driven by glial release of proinflammatory cytokines and other neuroexcitatory substances. This recently recognized role of spinal cord glia and glially derived proinflammatory cytokines as powerful modulators of pain is exciting as it may provide novel approaches for controlling human chronic pain states that are poorly controlled by currently available therapies.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.