• J. Biol. Chem. · Mar 2012

    On potential interactions between non-selective cation channel TRPM4 and sulfonylurea receptor SUR1.

    • Monica Sala-Rabanal, Shizhen Wang, and Colin G Nichols.
    • Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
    • J. Biol. Chem. 2012 Mar 16; 287 (12): 8746-56.

    AbstractThe sulfonylurea receptor SUR1 associates with Kir6.2 or Kir6.1 to form K(ATP) channels, which link metabolism to excitability in multiple cell types. The strong physical coupling of SUR1 with Kir6 subunits appears exclusive, but recent studies argue that SUR1 also modulates TRPM4, a member of the transient receptor potential family of non-selective cation channels. It has been reported that, following stroke, brain, or spinal cord injury, SUR1 is increased in neurovascular cells at the site of injury. This is accompanied by up-regulation of a non-selective cation conductance with TRPM4-like properties and apparently sensitive to sulfonylureas, leading to the postulation that post-traumatic non-selective cation currents are determined by TRPM4/SUR1 channels. To investigate the mechanistic hypothesis for the coupling between TRPM4 and SUR1, we performed electrophysiological and FRET studies in COSm6 cells expressing TRPM4 channels with or without SUR1. TRPM4-mediated currents were Ca(2+)-activated, voltage-dependent, underwent desensitization, and were inhibited by ATP but were insensitive to glibenclamide and tolbutamide. These properties were not affected by cotransfection with SUR1. When the same SUR1 was cotransfected with Kir6.2, functional K(ATP) channels were formed. In cells cotransfected with Kir6.2, SUR1, and TRPM4, we measured K(ATP)-mediated K(+) currents and Ca(2+)-activated, sulfonylurea-insensitive Na(+) currents in the same patch, further showing that SUR1 controls K(ATP) channel activity but not TRPM4 channels. FRET signal between fluorophore-tagged TRPM4 subunits was similar to that between Kir6.2 and SUR1, whereas there was no detectable FRET efficiency between TRPM4 and SUR1. Our data suggest that functional or structural association of TRPM4 and SUR1 is unlikely.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.