-
- S Jean, I Cinel, I Gratz, C Tay, V Lotano, E Deal, J E Parrillo, and R P Dellinger.
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson School of Medicine, Cooper University Hospital, Division of Critical Care Medicine, Department of Medicine, Camden, NJ, USA. jeansmith@cooperhealth.edu
- Eur J Anaesthesiol. 2008 Dec 1; 25 (12): 995-1001.
Background And ObjectivesWith the increasing demand for one-lung ventilation in both thoracic surgery and other procedures, identifying the correct placement becomes increasingly important. Currently, endobronchial intubation is suspected based on a combination of auscultation and physiological findings. We investigated the ability of the visual display of airflow-induced vibrations to detect single-lung ventilation with a double-lumen endotracheal tube.MethodsDouble-lumen tubes were placed prior to surgery. Tracheal and endobronchial lumens were alternately clamped to produce unilateral lung ventilation of right and left lung. Vibration response imaging, which detects vibrations transmitted to the surface of the thorax, was performed during both right- and left-lung ventilation. Geographical area of vibration response image as well as amount and distribution of lung sounds were assessed.ResultsDuring single-lung ventilation, the image and video obtained from the vibration response imaging identifies the ventilated lung with a larger and darker image on the ventilated side. During single-lung ventilation, 87.2 +/- 5.7% of the measured vibrations was detected over the ventilated lung and 12.8 +/- 5.7% over the non-ventilated lung (P < 0.0001). It was also noted that during single-lung ventilation, the vibration distribution in the non-ventilated lung had a majority of vibration detected by the medial sensors closest to the midline (P < 0.05) as opposed to the midclavicular sensors when the lung is ventilated.ConclusionsDuring single-lung ventilation, vibration response imaging clearly showed increased vibration in the lung that is being ventilated. Distribution of residual vibration differed in the non-ventilated lung in a manner that suggests transmission of vibrations across the mediastinum from the ventilated lung. The lung image and video obtained from vibration response imaging may provide useful and immediate information to help one-lung ventilation assessment.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.