• Critical care medicine · Mar 1995

    Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine.

    • I L Cohen, F M Sheikh, R J Perkins, P J Feustel, and E D Foster.
    • Department of Surgery, State University of New York at Buffalo.
    • Crit. Care Med. 1995 Mar 1; 23 (3): 545-52.

    ObjectivesRespiratory quotient, the ratio of CO2 production to oxygen consumption (VO2), is principally affected by the fuel source used for aerobic metabolism. Since the respiratory quotient, VO2, and CO2 production cannot be directly measured easily, indirect calorimetry is commonly used to determine the value of these variables at the airway level (i.e., airway respiratory quotient, airway VO2, and airway CO2 production). However, under nonsteady-state conditions, a variety of phenomena can alter the relationship between true metabolic activity and measurements determined by indirect calorimetry. During exercise, for example, airway respiratory quotient increases as anaerobic threshold is reached because of the disproportionate increase in airway CO2 production that results from the CO2 liberated through the buffering of excess hydrogen ions by bicarbonate. We hypothesized that hemorrhage and reinfusion might change airway respiratory quotient in a consistent manner as shock is produced and reversed.DesignProspective laboratory study.SettingUniversity animal laboratory.SubjectsEight pigs (25 +/- 2 [SD] kg), anesthetized with fentanyl and relaxed with pancuronium bromide, and mechanically ventilated on room air.InterventionsThe animals were sequentially hemorrhaged and then autotransfused while metabolic and hemodynamic measurements were obtained, using continuous indirect calorimetry and continuous applications of the Fick principle. Hemoglobin, arterial lactate concentration, and blood gases for calibration were measured serially. Analysis of variance was used to compare various periods in time.Measurements And Main ResultsBetween baseline and peak hemorrhage, and between peak hemorrhage and postreinfusion, all of the following variables changed significantly (p < .05): airway VO2 (baseline 6.4 +/- 0.9 mL/min/kg, peak hemorrhage 3.9 +/- 0.6 mL/min/kg, postreinfusion 7.0 +/- 1.4 mL/min/kg); airway CO2 production (baseline 5.5 +/- 0.9 mL/min/kg, peak hemorrhage 4.5 +/- 0.9 mL/min/kg, postreinfusion 6.0 +/- 1.4 mL/min/kg); airway respiratory quotient (baseline 0.87 +/- 0.07, peak hemorrhage 1.16 +/- 0.07, postreinfusion 0.87 +/- 0.05); lactate concentration (baseline 2.4 +/- 1.2 mmol/L, peak hemorrhage 6.7 +/- 1.9 mmol/L, postreinfusion 5.1 +/- 2.0 mmol/L); and delta PCO2 (venous PCO2-PaCO2) (baseline 4.5 +/- 3.6 torr [0.6 +/- 0.5 kPa], peak hemorrhage 12.1 +/- 5.3 torr [1.6 +/- 0.7 kPa], postreinfusion 2.7 +/- 2.7 torr [0.4 +/- 0.4 kPa]).ConclusionsAirway respiratory quotient increases in hemorrhagic shock and decreases again as shock is reversed during reinfusion. This phenomenon appears related to the buffering of excess of hydrogen ion during hemorrhagic shock.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.