• Eur J Anaesthesiol · Jul 2011

    Thoracic epidural anaesthesia disrupts the protective mechanism of homeometric autoregulation during right ventricular pressure overload by cardiac sympathetic blockade: a randomised controlled animal study.

    • Carlo Missant, Steffen Rex, Piet Claus, Sarah Derde, and Patrick F Wouters.
    • Department of Acute Medical Sciences - Anaesthesiology, Catholic University Leuven, Leuven, Belgium. carlo.missant@med.kuleuven.be
    • Eur J Anaesthesiol. 2011 Jul 1;28(7):535-43.

    ContextThoracic epidural anaesthesia (TEA) is increasingly used in high-risk surgical patients. We recently demonstrated that TEA-mediated cardiac sympathicolysis prevents the native right ventricular positive inotropic response to the induction of acute pulmonary hypertension.ObjectivesIn this subsequent study, we induced a selective TEA after acute pulmonary hypertension had been established. We hypothesised that TEA in these circumstances would also exert negative inotropic effects on the right ventricle, not being mediated by possible effects on vasotonus, right ventricular coronary flow dynamics or right ventricular oxygen balance.DesignRandomised placebo-controlled animal study.SettingUniversity hospital animal laboratory.InterventionsEighteen pigs were instrumented with an epidural catheter at the thoracic or lumbar level, a right ventricular pressure-volume catheter, transonic flow probes around the pulmonary artery and the right coronary artery, a pressure catheter in the pulmonary artery and a 22-G catheter within a right ventricular free wall coronary vein. Right ventricular pressure overload was induced by constricting the pulmonary artery. After haemodynamic stabilisation, animals were then assigned to receive TEA (n = 6, 1 ml bupivacaine 0.5%), lumbar epidural anaesthesia (LEA) (n = 6, 4 ml bupivacaine 0.5%) or control (n = 6, isotonic saline). The extent of the sympathetic block was assessed by thermography. Final measurements were performed 30 min after the induction of epidural anaesthesia.ResultsPulmonary artery constriction increased pulmonary artery effective elastance and right ventricular contractility in all groups. TEA caused a sympathetic block ranging from C6 to T6, whereas LEA caused a block from T13 to L5. TEA decreased right ventricular contractility (1.5 ± 0.6 vs. 3.2 ± 0.9 mW s ml(-1)) and cardiac output (1.8 ± 0.3 vs. 2.4 ± 0.3 l min(-1)), although systemic vascular resistance was unaffected. In the LEA group, systemic vascular resistance decreased, but right ventricular contractility remained unchanged. Right ventricular coronary flow, oxygen delivery and consumption were comparable between the groups.ConclusionDuring acute pulmonary hypertension, selective blockade of cardiac sympathetic nerves by TEA acutely abolished the protective adaptation of right ventricular contractility to right ventricular pressure overload and deteriorated systemic haemodynamics. This effect was attributable solely to the depression of right ventricular contractility and was neither the result of impaired right ventricular coronary flow dynamics nor of systemic vasodilation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.