• Brain research · Dec 1984

    Review Comparative Study

    Neurophysiological effects of capsaicin.

    • L C Russell and K J Burchiel.
    • Brain Res. 1984 Dec 1; 320 (2-3): 165-76.

    AbstractData obtained from neonatally treated rats are fairly consistent. However, there is disagreement as to whether mechanical and thermal nociceptive thresholds are elevated or unchanged in this group. There are at least two major areas of disagreement in adult animal capsaicin research. Behavioral data are extremely variable. The thermal nociceptive threshold after systemic capsaicin has been reported to be both raised and lowered. After intrathecal capsaicin injection, the thermal nociceptive threshold was reported raised, but onset and duration of responses varied and some animals exhibited no changes. Capsaicin application to peripheral nerve, however, drastically increased thermal threshold. Mechanical pain threshold has been reported both increased and unchanged after systemic capsaicin treatment and unchanged after intrathecal injection. Obviously, capsaicin's effects upon pain perception are not fully understood. Although lower on the phylogenetic scale than many mammals, rodents exhibit complex individualistic behavior. Lower vertebrates may eventually provide more simple behavioral models for pain tolerance. Investigators also disagree as to whether C fibres can conduct action potentials after local capsaicin application. C fibre conduction was reported unaffected by capsaicin in an acute preparation and for 13-21 days after treatment. On the other hand, C fibre compound action potentials have been reported diminished for up to 2 h after capsaicin application. Additional conduction impairment studies will be useful in comparing peripheral and intrathecal capsaicin application. There is general agreement that, allowing for variation in dosages and route of administration, capsaicin causes central and peripheral C fibre damage, though never as extensive in adults as in neonates. Neonatal capsaicin treatment (always s.c.) results in destruction of C and some A delta fibres and their central terminals. Capsaicin causes degeneration of C terminals in the adult CNS only when applied centrally. In both neonates and adults, s.c. capsaicin depletes the putative 'pain' peptide neurotransmitter, SP, from peripheral and sensory neurons and the tissues they innervate but not from the gut. Capsaicin-induced SP depletion in neonates is permanent. Systemic administration to adult depleted SP from much the same areas as observed in neonates, but all areas but the medulla exhibited a slow, regional recovery. Intraventricular injection of capsaicin depleted SP in the adult medulla only, while other SP-containing areas affected by systemic injection remained intact.(ABSTRACT TRUNCATED AT 400 WORDS)

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…