• J. Immunol. · Dec 2009

    Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses.

    • Qiong Wang, Deepti R Nagarkar, Emily R Bowman, Dina Schneider, Babina Gosangi, Jing Lei, Ying Zhao, Christina L McHenry, Richai V Burgens, David J Miller, Umadevi Sajjan, and Marc B Hershenson.
    • Department of Molecular and Integrative Physiology., University of Michigan, Ann Arbor, MI 48109, USA
    • J. Immunol. 2009 Dec 1; 183 (11): 6989-97.

    AbstractRhinovirus (RV), a ssRNA virus of the picornavirus family, is a major cause of the common cold as well as asthma and chronic obstructive pulmonary disease exacerbations. Viral dsRNA produced during replication may be recognized by the host pattern recognition receptors TLR-3, retinoic acid-inducible gene (RIG)-I, and melanoma differentiation-associated gene (MDA)-5. No study has yet identified the receptor required for sensing RV dsRNA. To examine this, BEAS-2B human bronchial epithelial cells were infected with intact RV-1B or replication-deficient UV-irradiated virus, and IFN and IFN-stimulated gene expression was determined by quantitative PCR. The separate requirements of RIG-I, MDA5, and IFN response factor (IRF)-3 were determined using their respective small interfering RNAs (siRNA). The requirement of TLR3 was determined using siRNA against the TLR3 adaptor molecule Toll/IL-1R homologous region-domain-containing adapter-inducing IFN-beta (TRIF). Intact RV-1B, but not UV-irradiated RV, induced IRF3 phosphorylation and dimerization, as well as mRNA expression of IFN-beta, IFN-lambda1, IFN-lambda2/3, IRF7, RIG-I, MDA5, 10-kDa IFN-gamma-inducible protein/CXCL10, IL-8/CXCL8, and GM-CSF. siRNA against IRF3, MDA5, and TRIF, but not RIG-I, decreased RV-1B-induced expression of IFN-beta, IFN-lambda1, IFN-lambda2/3, IRF7, RIG-I, MDA5, and inflammatory protein-10/CXCL10 but had no effect on IL-8/CXCL8 and GM-CSF. siRNAs against MDA5 and TRIF also reduced IRF3 dimerization. Finally, in primary cells, transfection with MDA5 siRNA significantly reduced IFN expression, as it did in BEAS-2B cells. These results suggest that TLR3 and MDA5, but not RIG-I, are required for maximal sensing of RV dsRNA and that TLR3 and MDA5 signal through a common downstream signaling intermediate, IRF3.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.