• Clinical biomechanics · Mar 2012

    Posterior motion preserving implants evaluated by means of intervertebral disc bulging and annular fiber strains.

    • Frank Heuer, Hendrik Schmidt, Wolfram Käfer, Nicolas Graf, and Hans-Joachim Wilke.
    • Institute of Orthopaedic Research and Biomechanics, Director Prof. Lutz Claes, University of Ulm, Helmholtzstrasse 14, Ulm, Germany.
    • Clin Biomech (Bristol, Avon). 2012 Mar 1; 27 (3): 218-25.

    BackgroundThe aims of motion preserving implants are to ensure sufficient stability to the spine, to release facet joints by also allowing a physiological loading to the intervertebral disc. The aim of this study was to assess disc load contribution by means of annular fiber strains and disc bulging of intact and stiffened segments. This was compared to the segments treated with various motion preserving implants.MethodsA laser scanning device was used to obtain three-dimensional disc bulging and annular fiber strains of six lumbar intervertebral discs (L2-3). Specimens were loaded with 500N or 7.5Nm moments in a spine tester. Each specimen was treated with four different implants; DSS™, internal fixator, Coflex™, and TOPS™.FindingsIn axial compression, all implants performed in a similar way. In flexion, the Coflex decreased range of motion by 13%, whereas bulging and fiber strains were similar to intact. The DSS stabilized segments by 54% compared to intact. TOPS showed a slight decrease in fiber strains (5%) with a range of motion similar to intact. The rigid fixator allowed strains up to 2%. In lateral bending, TOPS yielded range of motion values similar to intact, but maximum fiber strains doubled from 6.5% (intact) to 13.8%. Coflex showed range of motion, bulging and strain values similar to intact. The DSS and the rigid fixator reduced these values. The implants produced only minor changes in axial rotation.InterpretationThis study introduces an in vitro method, which was employed to evaluate spinal implants other than standard biomechanical methods. We could demonstrate that dynamic stabilization methods are able to keep fiber strains and disc bulging in a physiological range.Copyright © 2011 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…