-
Biological psychiatry · Oct 2014
Widespread reductions in cortical thickness following severe early-life deprivation: a neurodevelopmental pathway to attention-deficit/hyperactivity disorder.
- Katie A McLaughlin, Margaret A Sheridan, Warren Winter, Nathan A Fox, Charles H Zeanah, and Charles A Nelson.
- Boston Children's Hospital, Harvard Medical School, Boston; Harvard Center on the Developing Child, Cambridge, Massachusetts. Electronic address: mclaughk@uw.edu.
- Biol. Psychiatry. 2014 Oct 15; 76 (8): 629-38.
BackgroundChildren exposed to early-life psychosocial deprivation associated with institutional rearing are at markedly elevated risk of developing attention-deficit/hyperactivity disorder (ADHD). Neurodevelopmental mechanisms that explain the high prevalence of ADHD in children exposed to institutionalization are unknown. We examined whether abnormalities in cortical thickness and subcortical volume were mechanisms explaining elevations in ADHD among children raised in institutional settings.MethodsData were drawn from the Bucharest Early Intervention Project, a cohort of children raised from early infancy in institutions in Romania (n = 58) and age-matched community control subjects (n = 22). Magnetic resonance imaging data were acquired when children were aged 8 to 10 years, and ADHD symptoms were assessed using the Health and Behavior Questionnaire.ResultsChildren reared in institutions exhibited widespread reductions in cortical thickness across prefrontal, parietal, and temporal regions relative to community control subjects. No group differences were found in the volume of subcortical structures. Reduced thickness across numerous cortical areas was associated with higher levels of ADHD symptoms. Cortical thickness in lateral orbitofrontal cortex, insula, inferior parietal cortex, precuneus, superior temporal cortex, and lingual gyrus mediated the association of institutionalization with inattention and impulsivity; additionally, supramarginal gyrus thickness mediated the association with inattention and fusiform gyrus thickness mediated the association with impulsivity.ConclusionsSevere early-life deprivation disrupts cortical development resulting in reduced thickness in regions with atypical function during attention tasks in children with ADHD, including the inferior parietal cortex, precuneus, and superior temporal cortex. These reductions in thickness are a neurodevelopmental mechanism explaining elevated ADHD symptoms in children exposed to institutional rearing.Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.