• Spine · Jul 2009

    Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.

    • Chia-Ying Lin, Heesuk Kang, Jeffrey P Rouleau, Scott J Hollister, and Frank La Marca.
    • Spine Research Laboratory, Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA. lincy@umich.edu
    • Spine. 2009 Jul 1; 34 (15): 1554-60.

    Study DesignSegmental motion and bone-implant interface stresses were analyzed at C5-C6 levels with Bryan, Prestige LP, and ProDisc-C cervical disc prostheses using an image-based finite element modeling technique.ObjectiveTo predict stress patterns at the interface between prosthesis and lower vertebral end plate to better understand the underlying mechanisms of subsidence and how the load transfer pattern of each disc design affects segmental motion.Summary Of Background DataSubsidence is one of the most commonly reported device-related complications in intervertebral disc arthroplasty. Although clinical outcomes have been reported regarding many types of cervical prostheses, few reports have analyzed the effects of stress from cervical artificial discs to the vertebral end plate.MethodsThree-dimensional voxel finite elements were built for C5-C6 spine unit based on computed tomography images acquired from a patient with indication for cervical disc arthroplasty. Models of facet joints and uncovertebral joints were added and artificial disc designs were placed in the intervertebral disc space. Static analyses were conducted under normal physiologic loads in flexion, extension, and lateral bending with precompression.ResultsBryan disc recovered highest range of motion (4.75 degrees ) due to the high elastic nucleus, and therefore imposed the lowest stresses superior to C6. The ProDisc-C and Prestige LP discs caused high stress concentrations around their central fins or teeth, and may initiate bone absorption. Analysis of Prestige LP disc may indicate possible subsidence posteriorly caused by the rear-positioned metal-to-metal joint.ConclusionRigidity of the cores ("nuclei") in Prestige LP and ProDisc-C prostheses guarantee initial maintenance of disc height, but high contact stress takes place at the bone-end plate interface if they are improperly placed or undersized. Anchorage designs add an additional factor that may increase propensity of subsidence, indicated by the high contact stress occurring at the end plate flanges of Prestige LP, and at midline keel fixation on the end plate of ProDisc-C. Although Bryan disc differs in these 2 concerns, it also creates much larger displacement during motion with more variation in disc height that may theoretically increase the load sharing of facet and/or uncovertebral joints compared to more rigid artificial discs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…