-
Bmc Med Res Methodol · Jan 2015
Predictive modeling in pediatric traumatic brain injury using machine learning.
- Shu-Ling Chong, Nan Liu, Sylvaine Barbier, and Marcus Eng Hock Ong.
- Department of Emergency Medicine, KK Women's and Children's Hospital, Singapore, Singapore. chong.shu-ling@kkh.com.sg.
- Bmc Med Res Methodol. 2015 Jan 1; 15: 22.
BackgroundPediatric traumatic brain injury (TBI) constitutes a significant burden and diagnostic challenge in the emergency department (ED). While large North American research networks have derived clinical prediction rules for the head injured child, these may not be generalizable to practices in countries with traditionally low rates of computed tomography (CT). We aim to study predictors for moderate to severe TBI in our ED population aged < 16 years.MethodsThis was a retrospective case-control study based on data from a prospective surveillance head injury database. Cases were included if patients presented from 2006 to 2014, with moderate to severe TBI. Controls were age-matched head injured children from the registry, obtained in a 4 control: 1 case ratio. These children remained well on diagnosis and follow up. Demographics, history, and physical examination findings were analyzed and patients followed up for the clinical course and outcome measures of death and neurosurgical intervention. To predict moderate to severe TBI, we built a machine learning (ML) model and a multivariable logistic regression model and compared their performances by means of Receiver Operating Characteristic (ROC) analysis.ResultsThere were 39 cases and 156 age-matched controls. The following 4 predictors remained statistically significant after multivariable analysis: Involvement in road traffic accident, a history of loss of consciousness, vomiting and signs of base of skull fracture. The logistic regression model was created with these 4 variables while the ML model was built with 3 extra variables, namely the presence of seizure, confusion and clinical signs of skull fracture. At the optimal cutoff scores, the ML method improved upon the logistic regression method with respect to the area under the ROC curve (0.98 vs 0.93), sensitivity (94.9% vs 82.1%), specificity (97.4% vs 92.3%), PPV (90.2% vs 72.7%), and NPV (98.7% vs 95.4%).ConclusionsIn this study, we demonstrated the feasibility of using machine learning as a tool to predict moderate to severe TBI. If validated on a large scale, the ML method has the potential not only to guide discretionary use of CT, but also a more careful selection of head injured children who warrant closer monitoring in the hospital.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.