• Spine · Dec 2005

    Comparative Study

    Effects of charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol.

    • Vijay K Goel, Jonathan N Grauer, Tushar Ch Patel, Ashok Biyani, Koichi Sairyo, Srilakshmi Vishnubhotla, Aaron Matyas, Ian Cowgill, Miranda Shaw, Rebecca Long, David Dick, Manohar M Panjabi, and Hassan Serhan.
    • Spine Research Center, University of Toledo and Medical University of Ohio, Toledo, OH 43606, USA. vijay.goel@utoledo.edu
    • Spine. 2005 Dec 15; 30 (24): 2755-64.

    Study DesignFinite element model of L3-S1 segment and confirmatory cadaveric testing were used to investigate the biomechanical effects of a mobile core type artificial disc (Charité artificial disc; DePuy Spine, Raynham, MA) on the lumbar spine.ObjectiveTo determine the effects of the Charité artificial disc across the implanted and adjacent segments.Summary Of Background DataBiomechanical studies of artificial discs that quantify parameters, like the load sharing and stresses, are sparse in the literature, especially for mobile-type core artificial disc designs. In addition, there is no standard protocol for studying the adjacent segmental effects of such implants.MethodsHuman osteo-ligamentous spines (L1-S1) were tested before and after L5-S1 Charité artificial disc placement. The data were used to validate further an intact 3-dimensional (3-D) nonlinear L3-S1 finite element model. The model was subjected to 400-N axial compression and 10.6 Nm of flexion/extension pure moments (load control) or pure moments that produced the overall rotation of the L3-S1 Charité model equal to the intact case (hybrid approach). Resultant motion, load, and stress parameters were analyzed at the experimental and adjacent levels.ResultsFinite element model validation was achieved only with the load-controlled experiments. The hybrid approach, believed to be more clinically relevant, revealed that Charité artificial disc leads to motion increases in flexion (19%) and extension (44%) at the L5-S1 level. At the instrumented level, the decrease in the facet loads was less than at the adjacent levels; the corresponding decrease being 26% at L3-L4, 25% at L4-L5, and 13.4% at L5-S1 when compared to the intact. Intradiscal pressure changes in the L4-L5 and L3-L4 segments were minimal. Shear stresses at the Charité artificial disc-L5 endplate interface were higher than those at S1 interface. However, in the load control mode, the increase in facet loads in extension was approximately 14%, as compared to the intact case.ConclusionsThe hybrid testing protocol is advocated because it better reproduces clinical observations in terms of motion following surgery, using pure moments. Using this approach, we found that the Charité artificial disc placement slightly increases motion at the implanted level, with a resultant increase in facet loading when compared to the adjacent segments, while the motions and loads decrease at the adjacent levels. However, in the load control mode that we believe is not that clinically relevant, there was a large increase in motion and a corresponding increase in facet loads, as compared to the intact.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.