• Journal of neurology · Sep 2000

    Functional role of the limbic system and basal ganglia in motivated behaviors.

    • T Ono, H Nishijo, and H Nishino.
    • Department of Physiology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan. onotake@toyama-mpu.ac.jp
    • J. Neurol. 2000 Sep 1; 247 Suppl 5: V23-32.

    AbstractIt has been suggested that the cortico- and limbic-striatal systems are important in various motor functions such as motivated behaviors. In this paper we review our previous studies to investigate neuronal mechanisms of feeding behaviors. We recorded neuronal activity from the amygdala, caudate nucleus, globus pallidus, and substantia nigra during feeding behavior in monkeys, and compared neuronal responses recorded from these brain areas. First, of 710 amygdalar neurons tested, 129 (18.2%) responded to single sensory stimulation (48 to vision, 32 to audition, 49 to ingestion), 142 (20%) to multimodal stimulation, and 20 to only one item with affective significance. Eight food related amygdalar neurons were tested in reversal by salting food or introducing saline, and all responses were modulated by reversal. These results suggest that the amygdala might be important in ongoing recognition of the affective significance of complex stimuli (food-nonfood discrimination). Second, activity was recorded from 351 neurons in the head of the caudate nucleus of monkeys during an operant feeding task. The 16% of these neurons responded in the discrimination phase. Some of these neurons responded specifically to food. The magnitude of these food-specific neurons depended on the rewarding nature of the food (reward value), and was inversely related to the latency of the onset of bar press. Of the caudate neurons, 10% responded in the bar press phase. Activity of most neurons which responded in the bar press phase was not correlated to individual bar presses. Cooling of the dorsolateral prefrontal cortex abolished sustained responses during bar pressing, but did not abolish the feeding behavior. However, bar press speed tended to be delayed by prefrontal cooling. Third, activity of 358 neurons was recorded from the monkey globus pallidus, and 204 neurons responded during the feeding task. In the globus pallidus, few neurons responded to food in the discrimination phase. On the other hand, activity of most responsive neurons changed during bar press and/or ingestion phases. Activity of about half of these responsive neurons was directly related to specific feeding motor acts such as arm extension, flexion, bar pressing, grasping, chewing, etc. Some of these neurons showed motor-related responses with gradual and preparatory responses. These motor-related neurons were located mainly in the caudodorsal part of the globus pallidus. On the other hand, about one third, especially in the rostroventral part of the globus pallidus, showed dissociating responses in that they responded during bar pressing for food or during ingestion in an operant task, but not during bar pressing for nonfood or during forcible ingestion. The response magnitude of the neurons during arm extension and bar pressing depended on the nature of the food. Fourth, activity of 261 neurons was recorded from the substantia nigra pars reticulata. Most of responding neurons (more than two-thirds of the recorded neurons) responded during the bar press and/or ingestion phases. Activity of the one-third of neurons was related to specific motor execution such as arm extension, flexion and bar pressing, but not to motor preparation. These neurons were located mainly in the rostral part of the nucleus. More than one-third of the recorded neurons responded during feeding and/or drinking acts and intra- and perioral sensory stimuli, and were located mainly in the caudomedial part of the nucleus. Based upon these responses and known anatomical evidence, various information including that from the amygdala and prefrontal cortex is integrated in the basal ganglia, and converted to coordinated motivated behaviors such as feeding behavior.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.