-
Journal of neurochemistry · Jan 2001
Site of injury-directed induction of heme oxygenase-1 and -2 in experimental spinal cord injury: differential functions in neuronal defense mechanisms?
- N Panahian and M D Maines.
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, New York 14642, USA.
- J. Neurochem. 2001 Jan 1; 76 (2): 539-54.
AbstractThe heme oxygenase (HO) isozymes catalyze oxidation of the heme molecule to biliverdin and carbon monoxide (CO) with the release of chelated iron. Presently, we have defined, for the first time, propensity for site of injury-directed induction of isozymes--the stress-inducible isozyme, HO-1, responds distal (below) and the glucocorticoid (GC)-inducible HO-2 responds proximal (above) to the site of injury. We have also shown that reactive iron (Fe3+) and cGMP staining spatially resemble that of HO-1; which, in turn, colocalizes in motor neurons with transcription factors: Fas-associated protein containing death domain (FADD), tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and p53. Spinal cord injury (SCI) was inflicted by clip compression for 30 min, and analyses were carried out after 4 h or 16 h. When compared with spinal cord segments proximal to the site of injury, northern blot analysis showed remarkably higher levels of HO-1 mRNA distal (below) to the site of injury at both time points. In contrast, HO-2 mRNA levels were elevated proximal (above) to the site of injury and more prominently at 16 h post SCI. Immunohistochemical analyses were carried out using 2 x 5 mm segments above and below the compression site. When compared with segments above the site of injury, the intensity of HO-1 immunostaining and the number of HO-1 positive neurons in the ventral horn motor neurons were prominently increased in segments below the injury. Western blot analysis confirmed the observations. HO-2 protein was mapped to the ventral horn motor neurons, oligodendrocytes, the Clarke's nucleus neurons and the ependymal cells. When compared with segments below the site of injury, neuronal HO-2 staining intensity was increased above the site of injury, and most notably at 16 h. These observations were also confirmed by western blotting and HO activity measurements. Tissue Fe3+ and cGMP staining were increased and prominently mapped below the site of injury, where cGMP colocalized with HO-1 in the nucleus of the motor neurons. Also, a site of injury-directed pattern of induction of FADD, TRAIL, and p53 immunoreactivity, and a widespread colocalization of the oncogenes with HO-1 protein, were found within motor neurons below the level of injury. We forward the hypothesis that HO-1 and HO-2 have different roles in the defense mechanisms of the injured nervous system. We hypothesize that HO-1 protects against further damage by contributing to controlled cell death through their intrinsic suicide program, while HO-2 is involved in suppression of inflammatory response by NO derived radicals.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.